A.cm. B.cm2 查看更多

 

题目列表(包括答案和解析)

如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm。从初始时刻开始,动点P,Q 分别从点A,B同时出发,运动速度均为1 cm /s, 动点P沿A-B--C--E的方向运动,到点E停止;动点Q沿B--C--E--D的方向运动,到点D停止,设运动时间为s,PA Q的面积为y cm2,(这里规定:线段是面积为0的三角形)

解答下列问题:

(1) 当x=2s时,y=_____ cm2;当=  s时,y=_______ cm2

(2)当5 ≤ x ≤ 14 时,求y与之间的函数关系式。

(3)当动点P在线段BC上运动时,求出S梯形ABCD的值。

(4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值.

查看答案和解析>>

某校数学研究性学习小组准备设计一种高为60cm的简易废纸箱.如图1,废纸箱的一面利用墙,放置在地面上,利用地面作底,其它的面用一张边长为60cm的正方形硬纸板围成,经研究发现:由于废纸箱的高是确定的,所以废纸箱的横截面图形面积越大,则它的容积越大.

(1)该小组通过多次尝试,最终选定下表中的简便且易操作的三种横截面图形,如图2,是根据这三种横截面图形的面积y(cm2)与x(cm)(见表中横截面图形所示)的函数关系式而绘制出的图象.请你根据有信息,在表中空白处填上适当的数、式,并完成y取最大值时的设计示意图;
(2)在研究性学习小组展示研究成果时,小华同学指出:图2中“底角为60°的等腰梯形”的图象与其他两个图象比较,还缺少一部分,应该补画,你认为他的说法正确吗?请简要说明理由。

查看答案和解析>>

把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B 和点D重合,折痕为EF。若AB= 3 cm,BC=5 cm,则重叠部分△DEF的面积是       cm2

查看答案和解析>>

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s);
(1)当点P在线段DE上运动时,线段DP的长为_______cm,(用含t的代数式表示);
(2)当点N落在AB边上时,求t的值;
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式;
(4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中点处.直接写出在点P的整个运动过程中,点H落在线段CD上。

查看答案和解析>>

已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC =" 8" cm,BC =" 6" cm,EF =" 9" cm。
如图(2),△DEF从图(1)的位置出发,以1 cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移动。当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移。DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5)。解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由。
(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由。(图(3)供同学们做题使用)

查看答案和解析>>


同步练习册答案