题目列表(包括答案和解析)
提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?
探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
(1)当AP=
AD时(如图②):
∵AP=
AD,△ABP和△ABD的高相等,
∴S△ABP=
S△ABD .
∵PD=AD-AP=
AD,△CDP和△CDA的高相等,
∴S△CDP=
S△CDA .
∴S△PBC =S四边形ABCD-S△ABP-S△CDP
=S四边形ABCD-
S△ABD-
S△CDA
=S四边形ABCD-
(S四边形ABCD-S△DBC)-
(S四边形ABCD-S△ABC)
=
S△DBC+
S△ABC .
(2)当AP=
AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
(3)当AP=
AD时,S△PBC与S△ABC和S△DBC之间的关系式为:________________;
(4)一般地,当AP=
AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
问题解决:当AP=
AD(0≤
≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为:___________.
提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?
探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
(1
)当AP=![]()
∵AP=
AD,△ABP和△ABD的高相等,
∴S△ABP=
S△ABD .
∵PD=AD-AP=
AD,△CDP和△CDA的高相等,
∴S△CDP=
S△CDA .
∴S△PBC =S四边形ABCD-S△ABP-S△CDP
=S四边形ABCD-
S△ABD-
S△CDA
=S四边形ABCD-
(S四边形ABCD-S△DBC)-
(S四边形ABCD-S△ABC)
=
S△DBC+
S△ABC .
(2
)当AP=(3
)当AP=(4
)一般地,当AP=问题解决:当AP=
AD(0≤
≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为:___________.
提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?
探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
(1)当AP=
AD时(如图②):
∵AP=
AD,△ABP和△ABD的高相等,
∴S△ABP=
S△ABD.
∵PD=AD-AP=
AD,△CDP和△CDA的高相等,
∴S△CDP=
S△CDA.
∴S△PBC=S四边形ABCD-S△ABP-S△CDP
=S四边形ABCD-
S△ABD-
S△CDA
=S四边形ABCD-
(S四边形ABCD-S△DBC)-
(S四边形ABCD-S△ABC)
=
S△DBC+
S△ABC.
(2)当AP=
AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
(3)当AP=
AD时,S△PBC与S△ABC和S△DBC之间的关系式为:________;
(4)一般地,当AP=
AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
问题解决:当AP=
AD(0≤
≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为:________.
提出问题:如图,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?
探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
(1)当AP=
AD时(如图):
∵AP=
AD,△ABP和△ABD的高相等,
∴S△ABP=
S△ABD.
∵PD=AD-AP=
AD,△CDP和△CDA的高相等,
∴S△CDP=
S△CDA.
∴S△PBC=S四边形ABCD-S△ABP-S△CDP
=S四边形ABCD-
S△ABD-
S△CDA
=S四边形ABCD-
(S四边形ABCD-S△DBC)-
(S四边形ABCD-S△ABC)
=
S△DBC+
S△ABC.
(2)当
时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
(3)当
时,S△PBC与S△ABC和S△DBC之间的关系式为:________;
(4)一般地,当
(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
问题解决:当
时,S△PBC与S△ABC和S△DBC之间的关系式为:________.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com