题目列表(包括答案和解析)
如图,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c.
![]()
操作示例
我们可以取直角梯形ABCD的腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新图形.(如图1)
![]()
思考发现
小敏在操作后发现,该剪拼方法就是将△PEC绕点P逆时针旋转180°到△PED的位置,易知PE与PF在同一直线上,又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一直线上,那么构成的新图形是一个四边形,而且进一步可证得,该四边形是一个特殊的平行四边形——矩形.
实践探究
(1)矩形ABEF的面积是________.(用含a、b、c的式子表示)
(2)类比图(1)的剪接办法,请你就图(2)和图(3)中的两种情形分别画出剪拼成一个平行四边形的示意图.(注:图(2)和图(3)中的四边形均为梯形)
![]()
解决问题
小明原来有一块七巧板,形状为平行四边形ACDE,如图(4)所示,不小心损坏了一条边变成了五边形ABCDE的形状如图(5)所示,小明现在打算将图(5)中五边形在不改变其面积的前提下通过裁剪与拼接变成一个平行四边形,请你帮他画出剪接的示意图,并说明理由.
![]()
如果把连接梯形两腰的中点的线段叫做梯形的中位线,那么梯形的中位线有什么特征呢?
如图,在梯形ABCD中,AD∥BC,点E、F分别为两腰AB、CD的中点.则EF为梯形ABCD的中位线.仿照三角形的中位线定理,请你猜想EF的长与上、下底的关系.
猜想:EF=________.
我们按如下思路探究:
(1)连接AF并延长交BC的延长线于点G,你发现△ADF和△GCF有怎样的关系?证明你的结论.
(2)由(1)的结论,可以得出EF是△ABG中怎样的线段?
(3)由此你能证明你的猜想吗?试一试.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com