如图.⊙O是△ABC的内切圆.OD⊥AB于点D.交⊙O于点E.∠C=60°.如果⊙O的半径为2.则结论错误的是 查看更多

 

题目列表(包括答案和解析)

如图,点O是△ABC的内心,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:①∠BOC=90°+∠A;②EF不可能是△ABC的中位线;③设OD=m,AE+AF=n,则S△AEF=mn;④以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切.其中正确结论的个数是( )

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

如图,点O是△ABC的内心,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:①∠BOC=90°+∠A;②EF不可能是△ABC的中位线;③设OD=m,AE+AF=n,则S△AEF=mn;④以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切.其中正确结论的个数是( )

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

已知:如图1,⊙O与射线MN相切于点M,⊙O的半径为2,AC是⊙O的直径,A与M重合,△ABC是⊙O的内接三角形,且∠C=30°,
计算:弦AB=______,的长度______(结果保留π)
探究一:如图2,若⊙O和△ABC沿射线MN方向作无滑动的滚动,
(1)直接写出:点B第一次在射线MN上时,圆心O所走过的路线的长______点B第二次在射线MN上时,圆心O所走过的路线的长______(结果保留π)
(2)过点A、C分别作AD⊥MN于D,CE⊥MN于E,连接OD、OE,小明通过作图猜想:OD与OE相等,你认为小明的猜想正确吗?请说明你的理由
探究二:
如图3,将半径为R、圆心角为50°的扇形纸片AOB,在射线MN的方向作无滑动的滚动至扇形A′O′B′处,则顶点O经过的路线总长为______(用含R的代数式表示,结果保留π).

查看答案和解析>>

已知:如图1,⊙O与射线MN相切于点M,⊙O的半径为2,AC是⊙O的直径,A与M重合,△ABC是⊙O的内接三角形,且∠C=30°,
计算:弦AB=______,的长度______(结果保留π)
探究一:如图2,若⊙O和△ABC沿射线MN方向作无滑动的滚动,
(1)直接写出:点B第一次在射线MN上时,圆心O所走过的路线的长______点B第二次在射线MN上时,圆心O所走过的路线的长______(结果保留π)
(2)过点A、C分别作AD⊥MN于D,CE⊥MN于E,连接OD、OE,小明通过作图猜想:OD与OE相等,你认为小明的猜想正确吗?请说明你的理由
探究二:
如图3,将半径为R、圆心角为50°的扇形纸片AOB,在射线MN的方向作无滑动的滚动至扇形A′O′B′处,则顶点O经过的路线总长为______(用含R的代数式表示,结果保留π).

查看答案和解析>>

(2012•张家口一模)已知:如图1,⊙O与射线MN相切于点M,⊙O的半径为2,AC是⊙O的直径,A与M重合,△ABC是⊙O的内接三角形,且∠C=30°,
计算:弦AB=
2
2
AB
的长度
2
3
π
2
3
π
(结果保留π)
探究一:如图2,若⊙O和△ABC沿射线MN方向作无滑动的滚动,
(1)直接写出:点B第一次在射线MN上时,圆心O所走过的路线的长
2
3
π
2
3
π
点B第二次在射线MN上时,圆心O所走过的路线的长
14
3
π
14
3
π
(结果保留π)
(2)过点A、C分别作AD⊥MN于D,CE⊥MN于E,连接OD、OE,小明通过作图猜想:OD与OE相等,你认为小明的猜想正确吗?请说明你的理由
探究二:
如图3,将半径为R、圆心角为50°的扇形纸片AOB,在射线MN的方向作无滑动的滚动至扇形A′O′B′处,则顶点O经过的路线总长为
23
18
πR
23
18
πR
(用含R的代数式表示,结果保留π).

查看答案和解析>>


同步练习册答案