10.如下图.矩形中.=3.=4.如果将该矩形沿对角线折叠.点到达处.与相交于点.的长是 查看更多

 

题目列表(包括答案和解析)

(辽宁省2003年中考试题)如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带,该建筑物顶端宽度AD和高度DC都可直接测得,从ADC三点可看到塔顶端H,可供使用的测量工具有皮尺、测倾器.

  (1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG的方案,具体要求如下:

  ①测量数据尽可能少;

  ②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测AD间距离,用m表示;如果测DC间距离,用n表示;如果测角,用aβγ等表示.测倾器高度不计)

  (2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示)

 

查看答案和解析>>

(1)图①是一块直角三角形纸片.将该三角形纸片按如图①方法折叠,其中点A与点C重合,DE为折痕.试证明△CBE是等腰三角形;

(2)再将图①中的△CBE沿对称轴EF折叠(如图②).通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝无重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”.你能将图③中的△ABC折叠成一个组合矩形吗?如果能折成,请在图③中画出折痕;

(3)请在图④的方格纸中画出一个斜三角形,同时满足下列条件:①折成的组合矩形为正方形;②顶点都在格点(各小正方形的顶点)上;

(4)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四条边上).请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足何条件时,一定能折成组合矩形?

查看答案和解析>>

如图山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带,该建筑物顶端宽度AD和高度DC都可直接测得,从A、D、C三点可看到塔的顶点H,可供使用的测量工具有皮尺和一个测角仪.

(1)

请你根据现有条件,充分利用矩形建筑物,设计数种测量塔顶端到地面的高度HG的方案,在所给的图形上画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D间距离,用m表示;如果测D、C间距离,用n表示;如果测角,用α、β、γ等表示);

(2)

根据你测量的数据,计算塔顶到地面的高度HG(用含有所给字母的代数式表示);

(3)

在你设计的数种方案中,选出一种测量数量最少的方案作为最优方案.

如图用测倾仪测出∠HDM和∠HAM的度数α、γ,用皮尺量出AD和DC的长度m、n.

查看答案和解析>>

操作与探究:

(1)图①是一块直角三角形纸片.将该三角形纸片按如图方法折叠,是点A与点C重合,DE为折痕.试证明△CBE等腰三角形;

(2)再将图①中的△CBE沿对称轴EF折叠(如图②).通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝无重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”.你能将图③中的△ABC折叠成一个组合矩形吗?如果能折成,请在图③中画出折痕;

(3)请你在图④的方格纸中画出一个斜三角形,同时满足下列条件:①折成的组合矩形为正方形;②顶点都在格点(各小正方形的顶点)上;

(4)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四条边上).请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足何条件是,一定能折成组合矩形?

查看答案和解析>>

操作与探究:

(1)图①是一块直角三角形纸片。将该三角形纸片按如图方法折叠,是点A与点C重合,DE为折痕。试证明△CBE等腰三角形;

(2)再将图①中的△CBE沿对称轴EF折叠(如图②)。通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝无重叠)所成的矩形,我们称这样的两个矩形为组合矩形。你能将图③中的△ABC折叠成一个组合矩形吗?如果能折成,请在图③中画出折痕;

(3)请你在图④的方格纸中画出一个斜三角形,同时满足下列条件:①折成的组合矩形为正方形;②顶点都在格点(各小正方形的顶点)上;

(4)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四条边上)。请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足何条件是,一定能折成组合矩形?

查看答案和解析>>


同步练习册答案