题目列表(包括答案和解析)
已知向量
=(
),
=(
,![]()
),其中(
).函数
,其图象的一条对称轴为
.
(I)求函数
的表达式及单调递增区间;
(Ⅱ)在△ABC中,a、b、c分别为角A、B、C的对边,S为其面积,若
=1,b=l,S△ABC=
,求a的值.
【解析】第一问利用向量的数量积公式表示出![]()
,然后利用
得到
,从而得打解析式。第二问中,利用第一问的结论,表示出A,结合正弦面积公式和余弦定理求解a的值。
解:因为
![]()
由余弦定理得
,……11分故![]()
在△ABC中,
为三个内角
为三条边,
且![]()
(I)判断△ABC的形状;
(II)若
,求
的取值范围.
【解析】本题主要考查正余弦定理及向量运算
第一问利用正弦定理可知,边化为角得到![]()
![]()
所以得到B=2C,然后利用内角和定理得到三角形的形状。
第二问中,
![]()
得到。
(1)解:由
及正弦定理有:![]()
∴B=2C,或B+2C
,若B=2C,且
,∴
,
;∴B+2C
,则A=C,∴
是等腰三角形。
(2)
![]()
在△ABC中,内角A、B、C所对边的边长分别是a、b、c,已知c=2,C=
.
(Ⅰ)若△ABC的面积等于
,求a、b;
(Ⅱ)若
,求△ABC的面积.
【解析】第一问中利用余弦定理及已知条件得
又因为△ABC的面积等于
,所以
,得
联立方程,解方程组得
.
第二问中。由于
即为即
.
当
时,
,
,
,
所以
当
时,得
,由正弦定理得
,联立方程组
,解得
,得到
。
解:(Ⅰ) (Ⅰ)由余弦定理及已知条件得
,………1分
又因为△ABC的面积等于
,所以
,得
,………1分
联立方程,解方程组得
.
……………2分
(Ⅱ)由题意得![]()
,
即
.
…………2分
当
时,
,
,
,
……1分
所以
………………1分
当
时,得
,由正弦定理得
,联立方程组
,解得
,
;
所以![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com