22+132+142+152+1- 查看更多

 

题目列表(包括答案和解析)

计算
1
22-1
+
1
32-1
+
1
42-1
+
1
52-1
+…+
1
192-1
+
1
202-1

查看答案和解析>>

计算:(1-
1
22
)
(1-
1
32
)
(1-
1
42
)
(1-
1
52
)
(1-
1
62
)

查看答案和解析>>

观察等式找规律,灵活运用巧计算.
①22-12=(2-1)(a+1);
②32-12=(3+b)(3+1);
③42-12=(c-1)(4+1);

(1)求出等式中的a、b、c;
(2)根据你发现的规律,直接写出第n个等式(用含有n的等式表示);
(3)运用你发现的规律求(1-
1
22
)(1-
1
32
)(1-
1
42
)…(1-
1
20122
)(1-
1
20132
)
的值.

查看答案和解析>>

阅读下列材料:
某同学在计算3(4+1)(42+1)时,把3写成4-1后,发现可以连续运用平方差公式计算:3(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1.很受启发,后来在求(2+1)(22+1)(24+1)(28+1)…(22048+1)的值时,又改造此法,将乘积式前面乘以1,且把1写为2-1得(2+1)(22+1)(24+1)(28+1)…(22048+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(22048+1)=(22-1)(22+1)(24+1)(28+1)…(22048+1)=(24-1)(24+1)(28+1)…(22048+1)=(22048-1)(22048+1)=24096-1
回答下列问题:
(1)请借鉴该同学的经验,计算:(1+
1
2
)(1+
1
22
)(1+
1
24
)(1+
1
28
)+
1
215

(2)借用上面的方法,再逆用平方差公式计算:(1-
1
22
)(1-
1
32
)(1-
1
42
)…(1-
1
102
)

查看答案和解析>>

观察下列各式:62-42=4×5,112-92=4×10,172-152=4×16,…,
(1)你发现了什么规律?试用你发现的规律填空:512-492=4×
50
50
;752-732=4×.
(2)请你用含一个字母的等式将上面各式呈现的规律表示出来,并用所学数学知识说明你所写式子的正确性.
写出等式:
(n+2)2-n2=4(n+1)
(n+2)2-n2=4(n+1)
证明:
(3)计算乘积(1-
1
22
)(1-
1
32
)(1-
1
42
)…(1-
1
20112
)(1-
1
20122
)
等于
2013
4024
2013
4024
.(直接写出结果)

查看答案和解析>>


同步练习册答案