6.已知两函数与的交点为.则两函数与轴所围成的面积为 查看更多

 

题目列表(包括答案和解析)

已知:如图,二次函数y=a(x+1)2-4的图象与x轴分别交于A、B两点,与y轴交于点D,点C是二次函数y=a(x+1)2-4的图象的顶点,CD=.

1.求a的值

2.点M在二次函数y=a(x+1)2-4图象的对称轴上,且∠AMC=∠BDO,求点M的坐标.

3.将二次函数y=a(x+1)2-4的图象向下平移k(k>0)个单位,平移后的图象与直线CD分别交于E、F两点(点F在点E左侧),设平移后的二次函数的图象的顶点为C1,与y轴的交点为D1,是否存在实数k,使得CF⊥FC1,若存在,求出k的值;若不存在,请说明理由.

 

查看答案和解析>>

已知一元二次方程x2axa-2=0.

(1)求证:不论a为何实数,此方程总有两个不相等的实数根;

(2)设a<0,当二次函数yx2axa-2的图象与x轴的两个交点的距离为时,求出此二次函数的解析式;

(3)在(2)的条件下,若此二次函数图象与x轴交于AB两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.

【解析】(1)判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了,(2)根据二次函数图象与x轴的两个交点的距离公式解答即可.(3)是二次函数综合应用问题和三角形的综合应用

 

查看答案和解析>>

已知二次函数y=x2+bx+c与x轴交于A(-1,0)、B(1,0)两点.

1.求这个二次函数的关系式;

2.若有一半径为r的⊙P,且圆心P在抛物线上运动,当⊙P与两坐标轴都相切时,求半径r的值.

3.半径为1的⊙P在抛物线上,当点P的纵坐标在什么范围内取值时,⊙P与y轴相离、相交?

 

查看答案和解析>>

已知一元二次方程x2axa-2=0.
(1)求证:不论a为何实数,此方程总有两个不相等的实数根;
(2)设a<0,当二次函数yx2axa-2的图象与x轴的两个交点的距离为时,求出此二次函数的解析式;
(3)在(2)的条件下,若此二次函数图象与x轴交于AB两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.

查看答案和解析>>

已知抛物线y=x2kxk-2.
【小题1】(1)求证:不论k为任何实数,抛物线与x轴总有两个交点;
【小题2】(2)若反比例函数的图象与的图象关于y轴对称,又与抛物线交于点A(n,-3),求抛物线的解析式;
【小题3】(3)若点P是(2)中抛物线上的一点,且点P到两坐标轴的距离相等,求点P的坐标.

查看答案和解析>>


同步练习册答案