观察图 7 阴影部分构成的图案.请写出这四个图案都具有的两个特征,(2)借助图中的网格.请设计一个新的图案.是该图案同时具有你在解答(1)中所写的两个共同特征.(注意:①新图案不能与已知图案相同;②只答第问的解答不得分) 查看更多

 

题目列表(包括答案和解析)

化简或求值(本题满分16分,5+5+6):
(1)2x2-2+3x-1-2x-x2;           
(2)a2-(3a2-b2)-3(a2-2b2
(3)已知:(x-3)2+|y+2|=0,求代数式2x2+(-x2-2xy+2y2)-2(x2-xy+2y2)的值.

查看答案和解析>>

(本题满分12分,任选一题作答.)
Ⅰ、如图①,在平面直角坐标系中,O为坐标原点,边长为5的正三角形OAB的OA边在x轴的正半轴上.点C、D同时从点O出发,点C以1单位长/秒的速度向点A运动,点D以2个单位长/秒的速度沿折线OBA运动.设运动时间为t秒,0<t<5.
(1)当0<t<
52
时,证明DC⊥OA;
(2)若△OCD的面积为S,求S与t的函数关系式;
(3)以点C为中心,将CD所在的直线顺时针旋转60°交AB边于点E,若以O、C、E、D为顶点的四边形是梯形,求点E的坐标.
Ⅱ、(1)如图Ⅱ-1,已知△ABC,过点A画一条平分三角形面积的直线;
(2)如图Ⅱ-2,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO面积相等.
(3)如图Ⅱ-3,点M在△ABC的边上,过点M画一条平分三角形面积的直线.

查看答案和解析>>

如图,在平面直角坐标系中,点C(-3,0),点A、B分别在x轴,y轴的正半轴上,且满足.

1.求点A、B坐标

2.若点P从点C出发,以每秒1个单位的速度沿射线CB运动,连接AP。设△ABP面积为S,点P的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围

3.在(2)的条件下,是否存在点P,使以点A、B、P为顶点的三角形与△AOB相似?若存在,请直接写出点P的坐标;若不存在,请说明理由。(本题满分8分)

 

查看答案和解析>>

计算(本题满分12分,每题4分)

 (1)   ―12012+ ()-1―(3.14-π)0 

(2) (-6xy2)2(― xy +  y2―x2

(3)  先化简,再求值:(2m+n)2-(3mn)2+5m(mn),其中m=n=

 

查看答案和解析>>

解不等式组,并把它的解集在数轴上表示出来。(本题满分5分)

 

查看答案和解析>>

1. C   2. B   3.D   4.B  5.D   6.C  7. C   8. C   9.D   10.A 

11.4

12.y=2(x+3)2-7

13.

14.3

15.153

16.9800

17.解:原式=                     ………    2分

∵x≠0且x≠且x≠2                                        ………    3分

∴x=-1                                                 ……………   4分

∴原式==-                                  …………   5分

18.(1)答案不惟一,例如四个图案具有的共同特征可以是:①都是轴对称图形;②面积都等于四个小正方形的面积之和;③都是直线形图案。。。。。只要写出两个即可。……… 3分

(2)答案示例:


……  6分

19.已知:如图所示,AD为ΔABC的中线,且CF⊥AD于F,BE⊥AD的延长线于E.

求证;BE=CF.

证明:∵AD为ΔABC的中线。                                


∴BD=CD.                                                           ………  1分

∵BE⊥AD,CF⊥AD.

∴∠BED=∠CFD=90º .                                                ………  3分

又∠1=∠2.

∴ΔBED≌ΔCFD(AAS).                                                 ……… 5分

BE=CF                                                                ……… 7分

(本题还可以作AN⊥BC于N,利用等底等高的两个三角形的面积相等的性质证明)

20.(1)A品牌牙膏主要竞争优势是质量,①对A品牌牙膏的质量满意的最多;②对A品牌牙膏的广告,价格满意的不是最多;③对A品牌牙膏购买的人最多  ∴ A品牌牙膏靠的是质量优势             ……………………………………………………………        2分

(2)广告对用户选择品牌有影响,原因是:①对B,C牙膏的质量,价格满意的用户,相差不大;②对B品牌的广告,满意的用户比C多,相差较大;③购买B品牌的用户高于C.

  ∴广告影响用户选择品牌 。               ………………………………….      5分

(3)首先要提高质量,其次加大广告力度,最后注意合理的价格。……………      8分

21.(1)34.5元                                    ………………………      2分

(2)35.5元,28.5元                           ………………………     4分

(3)1331.25元                                 ………………………     8分

22.羊可以吃到的草的最大面积由三部分组成:第一部分:以点A为圆心,12米为半径。圆心角为60°的扇形的面积减去三角形ABC的面积;第二部分:以点B为圆心,6米为半径,圆心角为60°的扇形面积;第三部分与第二部分相等。       …………………    3分

因此,羊可以吃到的草的面积是:

(平方米)     …………………  8分

23.解;根据题意易知,水柱上任意一个点距中心的水平距离为x,与此点的

高度y之间的函数关系式是:                         ...............          1分

Y=a1(x+4)2+6      (-10≤x<0 )      或  y=a2(x+4)2+6     (0≤x≤10).....   3分

由x=-10,y=0,    可得a1=-;       由x=10,   y=0,     可得a2=-  .....   5分 

于是,所求函数解析式是   Y=-(x+4)2+6      (-10≤x<0 )

                         y=-(x+4)2+6     (0≤x≤10)             ………  6分

      当x=0时,y=                                             

     所以装饰物的高度为m                                        ………  8分

24.(1)连接O,D与B,D两点。

∵ΔBDC是RtΔ, 且E为BC中点。

∴∠EDB=∠EBD.                                                   ………    2分

又∵OD=OB  且∠EBD+∠DBO=90°       

∴∠EDB+∠ODB=90°

∴DE是⊙O的切线;                                                ……    4分

(2)∵∠EDO=∠B=90°,若要AOED是平行四边形,则DE∥AB,D为AC中点。

又∵BD⊥AC,

∴ΔABC为等腰直角三角形。

∴∠CAB=45°.                                                    ……     6分    

过E作EH⊥AC于H.

设BC=2k,

则EH=                                       ………………  8分

∴sin∠CAE=                                           ……     10分

25.(1) ?i    1                                                  …2分.

(2)①5   ②3+4i                                                  …4分

(3)已知(x+y)+3i=1-(x+y)i

可得    (x+y)+3i=(1-x)-yi                                     …5分

∴x+y=1-x     3=-y                                              …6分

∴x=2   y=-3                                                  …   8分

(4)解原式:=                 …   12分

 


同步练习册答案