题目列表(包括答案和解析)
在
中,
是三角形的三内角,
是三内角对应的三边,已知
成等差数列,
成等比数列
(Ⅰ)求角
的大小;
(Ⅱ)若
,求
的值.
【解析】第一问中利用依题意
且
,故![]()
第二问中,由题意
又由余弦定理知
![]()
,得到
,所以
,从而得到结论。
(1)依题意
且
,故
……………………6分
(2)由题意
又由余弦定理知
…………………………9分
即
故![]()
代入
得![]()
![]()
在
中,
,分别是角
所对边的长,
,且![]()
(1)求
的面积;
(2)若
,求角C.
【解析】第一问中,由
又∵
∴
∴
的面积为![]()
第二问中,∵a =7 ∴c=5由余弦定理得:
得到b的值,然后又由余弦定理得:
又C为内角 ∴![]()
解:(1)
………………2分
又∵
∴
……………………4分
∴
的面积为
……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴
……………………9分
又由余弦定理得:
又C为内角 ∴
……………………12分
另解:由正弦定理得:
∴
又
∴![]()
△ABC中,D在边BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的长及△ABC的面积。
![]()
【解析】本试题主要考查了余弦定理的运用。利用由题意得
,![]()
![]()
,
并且
有
得到结论。
解:(Ⅰ)由题意得
,![]()
………1分
…………1分
(Ⅱ)
………………1分
![]()
![]()
![]()
在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,
求⑴ ∠ADB的大小;⑵ BD的长.
![]()
【解析】本试题主要考查了三角形的余弦定理和正弦定理的运用
第一问中,∵cos∠ADC=![]()
=
=-
∴ cos∠ADB=cos(180°-∠ADC)=-cos∠ADC=
∴ cos∠ADB=60°
第二问中,结合正弦定理∵∠DAB=180°-∠ADB-∠B=75°
由
=
得BD=
=5(
+1)
解:⑴ ∵cos∠ADC=![]()
=
=-
,……………………………3分
∴ cos∠ADB=cos(180°-∠ADC)=-cos∠ADC=
,
……………5分
∴ cos∠ADB=60° ……………………………6分
⑵ ∵∠DAB=180°-∠ADB-∠B=75° ……………………………7分
由
=
……………………………9分
得BD=
=5(
+1)
在△ABC中,角A、B、C的对边分别为a、b、c,向量
=(sinA,b+c),
=(a-c,sinC-sinB),满足
=![]()
(Ⅰ)求角B的大小;
(Ⅱ)设
=(sin(C+
),
),
=(2k,cos2A) (k>1),
有最大值为3,求k的值.
【解析】本试题主要考查了向量的数量积和三角函数,以及解三角形的综合运用
第一问中由条件|p +q |=| p -q |,两边平方得p·q=0,又
p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,
即
,又由余弦定理
=2acosB,所以cosB=
,B=![]()
第二问中,m=(sin(C+
),
),n=(2k,cos2A) (k>1),m·n=2ksin(C+
)+
cos2A=2ksin(C+B) +
cos2A
=2ksinA+
-
=-
+2ksinA+
=-
+
(k>1).
而0<A<
,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-
=3,得k=
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com