在中.由余弦定理得. 查看更多

 

题目列表(包括答案和解析)

中,是三角形的三内角,是三内角对应的三边,已知成等差数列,成等比数列

(Ⅰ)求角的大小;

(Ⅱ)若,求的值.

【解析】第一问中利用依题意,故

第二问中,由题意又由余弦定理知

,得到,所以,从而得到结论。

(1)依题意,故……………………6分

(2)由题意又由余弦定理知

…………………………9分

   故

           代入

 

查看答案和解析>>

中,,分别是角所对边的长,,且

(1)求的面积;

(2)若,求角C.

【解析】第一问中,由又∵的面积为

第二问中,∵a =7  ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:         

又C为内角      ∴

解:(1) ………………2分

   又∵                   ……………………4分

     ∴的面积为           ……………………6分

(2)∵a =7  ∴c=5                                  ……………………7分

 由余弦定理得:      

    ∴                                     ……………………9分

又由余弦定理得:         

又C为内角      ∴                           ……………………12分

另解:由正弦定理得:  ∴ 又  ∴

 

查看答案和解析>>

△ABC中,D在边BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的长及△ABC的面积。

【解析】本试题主要考查了余弦定理的运用。利用由题意得,

并且得到结论。

解:(Ⅰ)由题意得,………1分…………1分

(Ⅱ)………………1分

   

 

查看答案和解析>>

在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,

求⑴ ∠ADB的大小;⑵ BD的长.

【解析】本试题主要考查了三角形的余弦定理和正弦定理的运用

第一问中,∵cos∠ADC=

=-∴ cos∠ADB=cos(180°-∠ADC)=-cos∠ADC=∴ cos∠ADB=60°

第二问中,结合正弦定理∵∠DAB=180°-∠ADB-∠B=75° 

    得BD==5(+1)

解:⑴ ∵cos∠ADC=

=-,……………………………3分

∴ cos∠ADB=cos(180°-∠ADC)=-cos∠ADC=,       ……………5分

∴ cos∠ADB=60°                                    ……………………………6分

⑵ ∵∠DAB=180°-∠ADB-∠B=75°                   ……………………………7分

                                 ……………………………9分

得BD==5(+1)

 

查看答案和解析>>

在△ABC中,角A、B、C的对边分别为a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),满足=

(Ⅰ)求角B的大小;

(Ⅱ)设=(sin(C+),), =(2k,cos2A) (k>1),  有最大值为3,求k的值.

【解析】本试题主要考查了向量的数量积和三角函数,以及解三角形的综合运用

第一问中由条件|p +q |=| p -q |,两边平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二问中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-=3,得k=.

 

查看答案和解析>>


同步练习册答案