17.已知直线与的交点为.则方程组的解是 . 查看更多

 

题目列表(包括答案和解析)

已知下列命题:①同位角相等;②若ac<0,则方程cx2+bx+a=0有两个不等实数根;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2-2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为(  )
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

已知抛物线y=ax2+bx+c(a≠0)与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴的正半轴交于点C.如果x1、x2是方程x2-x-6=0的两个根(x1<x2),且点C的坐标为(0,3).
(1)求此抛物线的解析式;
(2)请直接写出直线AC和BC的解析式;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作直线y=m(m为常数),与直线BC交于点Q,则在x轴上是否存在点R,使得以PQ为一腰的△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由;
(4)设直线y=kx+2k(k>0)与线段OC交于点D,与(1)中的抛物线交于点E,精英家教网若S△CDE=S△AOE,请直接写出点E的坐标.

查看答案和解析>>

已知下列命题:①同位角相等;②若x>y,则
1
x
1
y
;③对角线相等且互相垂直平分的四边形是正方形;④抛物线y=x2-x-1与坐标轴有2个不同交点;⑤已知一圆锥的高为4,母线长为5,则该圆锥的侧面展开图扇形的弧长为6π.从中任选一个命题是真命题的概率为(  )

查看答案和解析>>

已知抛物线y=
14
x2
,定点F的坐标为(0,1),定直线l的方程为:y=-1;
(1)当动点P在该抛物线上运动时,求证:P到定直线l的距离PP′等于P到定点F的距离.
(2)若过定点F任作一条直线,与抛物线交于M、N两点,再以线段MN的长为直径作一个圆C,试判断圆C与定直线l的位置关系,并说明理由.
(3)在(2)的条件下,你能否在定直线l上找到一点Q,使得QF恰好平分∠MQN?若能,求出点坐标;否则,说明理由.

查看答案和解析>>

已知抛物线y=x2-2x-3.
(1)它与x轴的交点的坐标为
(-1,0),(3,0)
(-1,0),(3,0)

(2)在坐标系中利用描点法画出它的图象;
(3)将该抛物线在x轴下方的部分(不包含与x轴的交点)记为G,若直线y=x+b与G只有一个公共点,则b的取值范围是
-3≤b<1或b=-
21
4
-3≤b<1或b=-
21
4

查看答案和解析>>


同步练习册答案