12.已知△ABC中.AB=40.AC=30.BC边上的高AD=24.则△ABC的面积为 A.600 B.336 C.168 D.600或168 查看更多

 

题目列表(包括答案和解析)

在△ABC中,已知D为直线BC上一点,若∠ABC=x°,∠BAD=y°.
(1)当D为边BC上一点,并且CD=CA,x=40,y=30时,则AB
=
=
 AC(填“=”或“≠”);
(2)如果把(1)中的条件“CD=CA”变为“CD=AB”,且x,y的取值不变,那么(1)中的结论是否仍成立?若成立请写出证明过程,若不成立请说明理由;
(3)若CD=CA=AB,请写出y与x的关系式及x的取值范围.(不写解答过程,直接写出结果)

查看答案和解析>>

如图,△ABC是一块等腰三角形的废铁料(ABAC).已知∠BAC是锐角,量得底边BC的长为60 cmBC边上的高为40 cm,用它截一块一边长为30 cm的矩形(要求:使矩形的一边与△ABC的一边重合,而矩形的另两个顶点分别在△ABC的另两条边上)

(1)问一共有几种不同的截法,请在图中画出所有截法的示意图,并在图中标明长为30 cm的那条边;

(2)试求出以上你所画的各种截法中,所截得的矩形的另一边长.

查看答案和解析>>

观察与思考:阅读下列材料,并解决后面的问题
在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图(1)),则sinB=
AD
c
,sinC=
AD
b
,即AD=csinB,AD=bsinC,于是csinB=bsinC,即
b
sinB
=
c
sinC
,同理有:
c
sinC
=
a
sinA
a
sinA
=
b
sinB

所以
a
sinA
=
b
sinB
=
c
sinC

即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.
根据上述材料,完成下列各题.

(1)如图(2),△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=
60°
60°
;AC=
20
6
20
6

(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻.某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A的距离AB.(结果精确到0.01,
6
≈2.449

查看答案和解析>>

如图,已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠CEG的度数为(  )

查看答案和解析>>

如图,已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠CEG的度数为( )

A.30°
B.35°
C.40°
D.45°

查看答案和解析>>


同步练习册答案