A. 查看更多

 

题目列表(包括答案和解析)

精英家教网A.(选修4-4坐标系与参数方程)已知点A是曲线ρ=2sinθ上任意一点,则点A到直线ρsin(θ+
π3
)=4
的距离的最小值是
 

B.(选修4-5不等式选讲)不等式|x-log2x|<x+|log2x|的解集是
 

C.(选修4-1几何证明选讲)如图所示,AC和AB分别是圆O的切线,且OC=3,AB=4,延长AO到D点,则△ABD的面积是
 

查看答案和解析>>

精英家教网A.(不等式选做题)若关于x的不等式|x+3|-|x+2|≥log2a有解,则实数a的取值范围是:
 

B.(几何证明选做题)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若
PB
PA
=
1
2
PC
PD
=
1
3
,则
BC
AD
的值为
 

C.(坐标系与参数方程选做题)设曲线C的参数方程为
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=
2
cosθ-sinθ
,则曲线C上到直线l距离为
2
的点的个数为:
 

查看答案和解析>>

精英家教网A.(不等式选做题)
函数f(x)=x2-x-a2+a+1对于任一实数x,均有f(x)≥0.则实数a满足的条件是
 

B.(几何证明选做题)
如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2
3
,AB=BC=4,则AC的长为
 

C.(坐标系与参数方程选做题)
在极坐标系中,曲线ρ=4cos(θ-
π
3
)
上任意两点间的距离的最大值为
 

查看答案和解析>>

精英家教网A.不等式
x-2
x2+3x+2
>0
的解集是
 

B.如图,AB是⊙O的直径,P是AB延长线上的一点,过P作⊙O的切线,切点为CPC=2
3
,若∠CAP=30°,则⊙O的直径AB=
 

C.(极坐标系与参数方程选做题)若圆C:
x=1+
2
cosθ
y=2+
2
sinθ
(θ为参数)
与直线x-y+m=0相切,则m=
 

查看答案和解析>>

精英家教网A.(不等式选做题)不等式|3x-6|-|x-4|>2x的解集为
 


B.(几何证明选做题)如图,直线PC与圆O相切于点C,割线PAB经过圆心O,
弦CD⊥AB于点E,PC=4,PB=8,则CE=
 

C.(坐标系与参数方程选做题)在极坐标系中,圆ρ=4cosθ的圆心到直线ρsin(θ+
π
4
)=2
2
的距离为
 

查看答案和解析>>

一、选择题:本大题共12小题,每小题5分,共60分。

 

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

D

B

C

A

A

C

D

B

D

C

C

1.B.因

2..因

3.B. 因为的定义域为[0,2],所以对

4. 函数为增函数

5. ,…,

6.    

7.  .由题知,垂足的轨迹为以焦距为直径的圆,则

,所以

8.  

9. .

10...函数

11..一天显示的时间总共有种,和为23总共有4种,故所求概率为.

12..当时,显然成立

时,显然不成立;当显然成立;

,则两根为负,结论成立

 

二、填空题:本大题共4小题,每小题4分,共16分。

13.        14..            15. 5        16. A、B、D

13.依题意

14.

15. 易求得到球心的距离分别为3、2,类比平面内圆的情形可知当与球心共线时,取最大值5。

16., ∴

的中点,则, ∴

,    则,而,∴

,∴

∴真命题的代号是

三、解答题:本大题共6小题,共74分。

17.解:(1)由

           

于是=.          

(2)因为

所以          

      

的最大值为.      

 

18.解:(1)令A表示两年后柑桔产量恰好达到灾前产量这一事件

 

(2)令B表示两年后柑桔产量超过灾前产量这一事件

 

19.(1)设的公差为的公比为,则为正整数,

      

依题意有

解得(舍去)      

(2) 

    

        

 

20.解 :(1)证明:依题设,的中位线,所以

∥平面,所以

的中点,所以

。              

因为

所以⊥面,则

因此⊥面

(2)作,连

因为⊥平面

根据三垂线定理知,,              

就是二面角的平面角。       

,则,则的中点,则

,由得,,解得

中,,则,

所以,故二面角

 

解法二:(1)以直线分别为轴,建立空间直角坐标系,

  

所以

所以         

所以平面           

,故:平面

 

(2)由已知

共线得:存在

同理:

是平面的一个法向量,

是平面的一个法量

              

所以二面角的大小为                 

21. 解:(1)因为

           

时,根的左右的符号如下表所示

极小值

极大值

极小值

 

所以的递增区间为        

的递减区间为          

(2)由(1)得到

                          

要使的图像与直线恰有两个交点,只要, 

.                        

 

22.(1)证明:设

则直线的方程:       

即:

上,所以①   

又直线方程:

得:

所以     

同理,

所以直线的方程:   

将①代入上式得,即点在直线

所以三点共线                           

(2)解:由已知共线,所以 

为直径的圆的方程:

所以(舍去),        

 

要使圆与抛物线有异于的交点,则

所以存在,使以为直径的圆与抛物线有异于的交点