17.已知. 查看更多

 

题目列表(包括答案和解析)

5、已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的(  )

查看答案和解析>>

精英家教网已知,如图:四边形ABCD为矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,
(1)求证:直线MN⊥直线AB;
(2)若平面PDC与平面ABCD所成的二面角大小为θ,能否确定θ使直线MN是异面直线AB与PC的公垂线,若能确定,求出θ的值,若不能确定,说明理由.

查看答案和解析>>

已知α,β均为锐角,且α+β=
π4
,则(1+tanα)(1+tanβ)=
 

查看答案和解析>>

已知,椭圆C过点A(1,
32
)
,两个焦点为(-1,0),(1,0).
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.

查看答案和解析>>

已知α,β,γ成公比为2的等比数列(α∈[0,2π]),且sinα,sinβ,sinγ也成等比数列.求α,β,γ的值.

查看答案和解析>>

一、选择题:本大题共12小题,每小题5分,共60分。

 

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

D

B

C

A

A

C

D

B

D

C

C

1.B.因

2..因

3.B. 因为的定义域为[0,2],所以对

4. 函数为增函数

5. ,…,

6.    

7.  .由题知,垂足的轨迹为以焦距为直径的圆,则

,所以

8.  

9. .

10...函数

11..一天显示的时间总共有种,和为23总共有4种,故所求概率为.

12..当时,显然成立

时,显然不成立;当显然成立;

,则两根为负,结论成立

 

二、填空题:本大题共4小题,每小题4分,共16分。

13.        14..            15. 5        16. A、B、D

13.依题意

14.

15. 易求得到球心的距离分别为3、2,类比平面内圆的情形可知当与球心共线时,取最大值5。

16., ∴

的中点,则, ∴

,    则,而,∴

,∴

∴真命题的代号是

三、解答题:本大题共6小题,共74分。

17.解:(1)由

           

于是=.          

(2)因为

所以          

      

的最大值为.      

 

18.解:(1)令A表示两年后柑桔产量恰好达到灾前产量这一事件

 

(2)令B表示两年后柑桔产量超过灾前产量这一事件

 

19.(1)设的公差为的公比为,则为正整数,

      

依题意有

解得(舍去)      

(2) 

    

        

 

20.解 :(1)证明:依题设,的中位线,所以

∥平面,所以

的中点,所以

。              

因为

所以⊥面,则

因此⊥面

(2)作,连

因为⊥平面

根据三垂线定理知,,              

就是二面角的平面角。       

,则,则的中点,则

,由得,,解得

中,,则,

所以,故二面角

 

解法二:(1)以直线分别为轴,建立空间直角坐标系,

  

所以

所以         

所以平面           

,故:平面

 

(2)由已知

共线得:存在

同理:

是平面的一个法向量,

是平面的一个法量

              

所以二面角的大小为                 

21. 解:(1)因为

           

时,根的左右的符号如下表所示

极小值

极大值

极小值

 

所以的递增区间为        

的递减区间为          

(2)由(1)得到

                          

要使的图像与直线恰有两个交点,只要, 

.                        

 

22.(1)证明:设

则直线的方程:       

即:

上,所以①   

又直线方程:

得:

所以     

同理,

所以直线的方程:   

将①代入上式得,即点在直线

所以三点共线                           

(2)解:由已知共线,所以 

为直径的圆的方程:

所以(舍去),        

 

要使圆与抛物线有异于的交点,则

所以存在,使以为直径的圆与抛物线有异于的交点