① 若点P在线段OA上运动时.过P.Q分别作轴的垂线.垂足分别为N.M.设矩形PQMN的面积为S .写出S和t之间的函数关系式.并求出S的最大值. 查看更多

 

题目列表(包括答案和解析)

如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).
(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;
(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;
(3)在图1中,设点D坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上.OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺吋针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1,绕点B1按顺吋针方向旋转 120°,此时点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处).
小慧还发现:三角形纸片在上述两次旋转的过程中.顶点O运动所形成的图形是两段圆弧,即
OO1
O1O2
,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧与直线l1围成的图形面积等于扇形A001的面积、△AO1B1的面积和扇形B1O1O2的面积之和.
小慧进行类比研究:如图②,她把边长为1的正方形纸片0ABC放在直线l2上,0A边与直线l2重合,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B2处,小慧又将正方形纸片 AO1C1B1绕顶点B1按顺时针方向旋转90°,….按上述方法经过若干次旋转后,她提出了如下问题:
问题①:若正方形纸片0ABC按上述方法经过3次旋转,求顶点0经过的路程,并求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形纸片OABC按上述方法经过5次旋转.求顶点O经过的路程;
问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点0经过的路程是
41+20
2
2
π

精英家教网

查看答案和解析>>

如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连接OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,精英家教网分别交x轴、直线OB于点E、F,点E为垂足,连接CF.
(1)当∠AOB=30°时,求弧AB的长度;
(2)当DE=8时,求线段EF的长;
(3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似?若存在,请求出此时点E的坐标;若不存在,请说明理由.

查看答案和解析>>

如图1,菱形ABOC的对角线OA、BC交于点D,∠BOC=60°,OA=2
3
,E为AC边中点,BE与OA交于点F,点P从点O(包含顶点O)开始沿OA方向以每秒2
3
个单位长度的速度运动,同时,点Q从点C(包含顶点C)出发沿CB方向以每秒1个单位长度的速度运动,当P到达点A时,P,Q同时停止运动,设运动时间为x秒.
(1)若记以P、B、E、Q为顶点的四边形面积为S,分别求出点P在线段OD(不含点D)和在线段AF(不含点F)上时,S关于x的函数关系式,并写出相应的自变量x的取值范围.
(2)若以P、B、E、Q为顶点的四边形是梯形,求x的值.
(3)如图2,若点M、N分别在菱形的边OC、AC上,且∠MBN=60°,∠MBN在∠OBA内部绕着点B旋转的过程中,请你探究OM+AN的值是否发生变化?若不变,求出其值;若发生变化,请说明理由.

查看答案和解析>>

如图1,已知抛物线y=ax2-2ax+b经过梯形OABC的四个顶点,若BC=10,梯形OABC的面积为18.
(1)求抛物线解析式;
(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,平移后的两条直线分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;
(3)如图3,设图1中点D坐标为(1,3),M为抛物线的顶点,动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案