联想拓展:小明通过探究后发现:当时.此类图形者能剪拼成正方形.且所选取的点G的位置在BA方向上随着b的增大不断上移.当时.如图20的图形能否剪拼成一个正方形?若能请你在图中画出剪拼的示意图,若不能.简要说明理由. 查看更多

 

题目列表(包括答案和解析)

26、在图1-3中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.

(1)操作发现:
①当2b<a时,如图1,在BA上选取点G,使BG=b,连接FG和CG,裁掉△FAG和△CGB,小明发现:如果先将△FAG绕点F逆时针旋转90°到△FEH的位置,那么△CGB恰可以拼接到△CHD的位置.请说明理由;
②对于拼接成的新四边形FGCH,小明通过度量发现其恰是正方形.请说明理由.
(2)实践探究:
小明进一步探究后发现:当2b<a、2b=a、a<2b<2a、b=a时(即b≤a时),此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.请你类比图1的剪拼方法,在图2(a<2b<2a)中画出剪拼成一个新正方形的示意图.
(3)联想拓展:
当b>a时,如图3的图形能否剪拼成一个正方形?若能,请你在图中画出剪拼的示意图;若不能,简要说明理由.

查看答案和解析>>

在图1-3中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.

(1)操作发现:
①当2b<a时,如图1,在BA上选取点G,使BG=b,连接FG和CG,裁掉△FAG和△CGB,小明发现:如果先将△FAG绕点F逆时针旋转90°到△FEH的位置,那么△CGB恰可以拼接到△CHD的位置.请说明理由;
②对于拼接成的新四边形FGCH,小明通过度量发现其恰是正方形.请说明理由.
(2)实践探究:
小明进一步探究后发现:当2b<a、2b=a、a<2b<2a、b=a时(即b≤a时),此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.请你类比图1的剪拼方法,在图2(a<2b<2a)中画出剪拼成一个新正方形的示意图.
(3)联想拓展:
当b>a时,如图3的图形能否剪拼成一个正方形?若能,请你在图中画出剪拼的示意图;若不能,简要说明理由.

查看答案和解析>>

在图1-3中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.

(1)操作发现:
①当2b<a时,如图1,在BA上选取点G,使BG=b,连接FG和CG,裁掉△FAG和△CGB,小明发现:如果先将△FAG绕点F逆时针旋转90°到△FEH的位置,那么△CGB恰可以拼接到△CHD的位置.请说明理由;
②对于拼接成的新四边形FGCH,小明通过度量发现其恰是正方形.请说明理由.
(2)实践探究:
小明进一步探究后发现:当2b<a、2b=a、a<2b<2a、b=a时(即b≤a时),此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.请你类比图1的剪拼方法,在图2(a<2b<2a)中画出剪拼成一个新正方形的示意图.
(3)联想拓展:
当b>a时,如图3的图形能否剪拼成一个正方形?若能,请你在图中画出剪拼的示意图;若不能,简要说明理由.

查看答案和解析>>

如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,
操作示例
我们可以取直角梯形ABCD的一腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2),
思考发现小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的判定方法,可以判断出四边形ABEF是一个平行四边形,而且还是一个特殊的平行四边形--矩形,
实践探究
(1)图2中,矩形ABEF的面积是_______;(用含a,b,c的式子表示)
(2)类比图2的剪拼方法,请你就图3(其中AD∥BC)和图4(其中AB∥DC)的两种情形分别画出剪拼成一个平行四边形的示意图;
联想拓展
小明通过探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形。
如图5的多边形中,AE=CD,AE∥CD,能否象上面剪切方法一样沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由。

查看答案和解析>>

如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,
操作示例:
我们可以取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2).
思考发现:
小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上.又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的判定方法,可以判断出四边形ABEF是一个平行四边形,而且还是一个特殊的平行四边形--矩形.
实践探究:
(1)矩形ABEF的面积是
 
;(用含a,b,c的式子表示)
(2)类比图2的剪拼方法,请你就图3和图4的两种情形分别画出剪拼成一个平行四边形的示意图.
精英家教网
联想拓展:
小明通过探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.
如图5的多边形中,AE=CD,AE∥CD,能否象上面剪切方法一样沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.
精英家教网

查看答案和解析>>


同步练习册答案