(1)若AC恰经过圆心O,请你在图3中画出符合题意的图形.并计算:的值, 查看更多

 

题目列表(包括答案和解析)

请阅读下列材料:
圆内的两条相交弦,被交点分成的两条线段长的积相等.即如图1,若弦AB、CD交于点P,则PA•PB=PC•PD.请你根据以上材料,解决下列问题.
精英家教网精英家教网
已知⊙O的半径为2,P是⊙O内一点,且OP=1,过点P任作-弦AC,过A、C两点分别作⊙O的切线m和n,作PQ⊥m于点Q,PR⊥n于点R.(如图2)
(1)若AC恰经过圆心O,请你在图3中画出符合题意的图形,并计算:
1
PQ
+
1
PR
的值;
(2)若OP⊥AC,请你在图4中画出符合题意的图形,并计算:
1
PQ
+
1
PR
的值;
(3)若AC是过点P的任一弦(图2),请你结合(1)(2)的结论,猜想:
1
PQ
+
1
PR
的值,并给出证明.

查看答案和解析>>

请阅读下列材料:
圆内的两条相交弦,被交点分成的两条线段长的积相等.即如图1,若弦AB、CD交于点P,则PA•PB=PC•PD.请你根据以上材料,解决下列问题.

已知⊙O的半径为2,P是⊙O内一点,且OP=1,过点P任作-弦AC,过A、C两点分别作⊙O的切线m和n,作PQ⊥m于点Q,PR⊥n于点R.(如图2)
(1)若AC恰经过圆心O,请你在图3中画出符合题意的图形,并计算:的值;
(2)若OP⊥AC,请你在图4中画出符合题意的图形,并计算:的值;
(3)若AC是过点P的任一弦(图2),请你结合(1)(2)的结论,猜想:的值,并给出证明.

查看答案和解析>>

(2009•东城区一模)请阅读下列材料:
圆内的两条相交弦,被交点分成的两条线段长的积相等.即如图1,若弦AB、CD交于点P,则PA•PB=PC•PD.请你根据以上材料,解决下列问题.

已知⊙O的半径为2,P是⊙O内一点,且OP=1,过点P任作-弦AC,过A、C两点分别作⊙O的切线m和n,作PQ⊥m于点Q,PR⊥n于点R.(如图2)
(1)若AC恰经过圆心O,请你在图3中画出符合题意的图形,并计算:的值;
(2)若OP⊥AC,请你在图4中画出符合题意的图形,并计算:的值;
(3)若AC是过点P的任一弦(图2),请你结合(1)(2)的结论,猜想:的值,并给出证明.

查看答案和解析>>

请阅读下列材料:
圆内的两条相交弦,被交点分成的两条线段长的积相等.即如图1,若弦AB、CD交于点P,则PA•PB=PC•PD.请你根据以上材料,解决下列问题.

已知⊙O的半径为2,P是⊙O内一点,且OP=1,过点P任作-弦AC,过A、C两点分别作⊙O的切线m和n,作PQ⊥m于点Q,PR⊥n于点R.(如图2)
(1)若AC恰经过圆心O,请你在图3中画出符合题意的图形,并计算:数学公式的值;
(2)若OP⊥AC,请你在图4中画出符合题意的图形,并计算:数学公式的值;
(3)若AC是过点P的任一弦(图2),请你结合(1)(2)的结论,猜想:数学公式的值,并给出证明.

查看答案和解析>>

如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,操作示例:我们可以取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2).
思考发现:小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上.又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的定义,可以得出四边形ABEF是一个平行四边形.
实践探究:
(1)类比图2的剪拼方法,请你分别就图3和图4的两种情形沿一条直线进行剪切,画出剪拼成一个平行四边形的示意图.
联想拓展:小明探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.
(2)如图5的多边形ABCDE中,AE∥CD,若连接AC,则恰有AC∥ED.请你象上面剪法一样沿一条直线进行剪切,将多边形ABCDE拼成一个平行四边形,请你在图5中画出剪拼的示意图,并简要写明剪拼方法(不需证明).

查看答案和解析>>


同步练习册答案