(1)如图3.在图2的基础上.设与直线的交点为.过点作.垂足为. 若...写出的值, 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,抛物线y=ax2+bx+c与直线y=kx+m在同一直角坐标系中,二次函数的图象与两坐标轴分别交于A(-1,0)、点B(3,0)和点C(0,-3),一次函数的图象与抛物线交于B、C两点.当x满足:
 
时一次函数值大于二次函数的值.

查看答案和解析>>

如图,已知双曲线y=
k
x
与直线y=
1
4
x
相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线y=
k
x
上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线y=
k
x
于点E,交BD于点C.
(1)若点A坐标是(8,2),求B点坐标及反比例函数解析式.
(2)过A点作AQ垂直于y轴交于Q点,设P点从D点出发沿D→C→N路线以1个单位长度的速度运动,DC长为4.求△AQP的面积S与运动时间t的关系式,并求出S的最大值.
(3)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.

查看答案和解析>>

问题提出:如何把一个正方形分割成n(n≥9)个小正方形?
为解决上面问题,我们先来研究两种简单的“基本分割法”.
基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形.
基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形.
问题解决:有了上述两种“基本分割法”后,我们就可以把一个正方形分割成n(n≥9)个小正方形.
(1)把一个正方形分割成9个小正方形.
①请你在基本分割法1基础上把答题卷上图③的正方形分割成9个正方形;
②请你在基本分割法2基础上把答题卷上图④的正方形分割成9个正方形;
(2)把答题卷上图⑤的正方形分割成10个小正方形.
(3)请你参照上述分割方法,把答题卷上图⑥给出的正方形分割成11个小正方形.
注意:本题以上所有解答,用钢笔或圆珠笔画出草图即可,不用说明分割方法
(4)请你简要叙述把一个正方形分割成n(n≥9)个小正方形的方法.

查看答案和解析>>

如图,抛物线y=
1
2
x2+bx+c
与直线l:y=
3
4
x-1
交于点A(4,2)、B(0,-1).
(1)求抛物线的解析式;
(2)点D在直线l下方的抛物线上,过点D作DE∥y轴交l于E、作DF⊥l于F,设点D的横坐标为t.
①用含t的代数式表示DE的长;
②设Rt△DEF的周长为p,求p与t的函数关系式,并求p的最大值及此时点D的坐标;
(3)点M在抛物线上,点N在x轴上,若△BMN是以M为直角顶点的等腰直角三角形,请直接写出点M的坐标.

查看答案和解析>>

如图,已知双曲线y=
k-3
x
(k为常数)与直线l相交于A、B两点,第一象限内的点M(点M在A的左侧)在双曲线y=
k-3
x
上,设直线AM、BM分别与y轴交于P、Q两点.若AM=m•MP,BM=n•MQ,则m-n的值是
-2
-2

查看答案和解析>>


同步练习册答案