在图(1)中.若.则的值等于 ,若.则的值等于 ,若面 .则的值等于 .联系拓广 查看更多

 

题目列表(包括答案和解析)

如图甲,在等腰直角三角形OAB中,∠OAB=90°,B点在第一象限,A点坐标为(1,0).△OCD与△OAB关于y轴对称.
(1)求经过D,O,B三点的抛物线的解析式;
(2)若将△OAB向上平移k(k>0)个单位至△O′A′B(如图乙),则经过D,O,B′三点的抛物线的对称轴在y轴的
 
.(填“左侧”或“右侧”)
(3)在(2)的条件下,设过D,O,B′三点的精英家教网抛物线的对称轴为直线x=m.求当k为何值时,|m|=
13

查看答案和解析>>

如图1,过△ABC顶点A作BC边上的高AD和中线AE,点D是垂足,点E是BC中点,规定λA=
DEBE
.特别地,当D、E重合时,规定λA=0.另外对λB、λC也作类似规定.

(1)①当△ABC中,AB=AC时,则λA=
0
0
;②当△ABC中,λAB=0时,则△ABC的形状是
等边三角形
等边三角形

(2)如图2,在Rt△ABC中,∠A=30°,求λA和λC的值;
(3)如图3,正方形网格中,格点△ABC的λA=
2
2

(4)判断下列三种说法的正误(正确的打“√”错误的打“×”)
①若△ABC中λA<1,则△ABC为锐角三角形
×
×

②若△ABC中λA=1,则△ABC为直角三角形

③若△ABC中λA>1,则△ABC为钝角三角形

(5)通过本题解答,同学们应该有这样的认识:一个无论多么陌生、多么综合的问题,其实都来自于书本已学的基础知识.因此,我们今后应重视基础知识的学习;同时在解决问题时或者解决问题后,应该思考该问题的本质和目的:①巩固哪些基础知识;②培养我们哪些方面能力;③向我们渗透哪些数学思想.本题之所以是一道综合题,就是因为涉及到的知识点多、面广.下面就请你谈谈本题中所用到的、已学过的性质、定理、公理或判定等.(至少列举两条)

查看答案和解析>>

如图甲,在等腰直角三角形OAB中,∠OAB=90°,B点在第一象限,A点坐标为(1,0).△OCD与△OAB关于y轴对称.
(1)求经过D,O,B三点的抛物线的解析式;
(2)若将△OAB向上平移k(k>0)个单位至△O′A′B(如图乙),则经过D,O,B′三点的抛物线的对称轴在y轴的______.(填“左侧”或“右侧”)
(3)在(2)的条件下,设过D,O,B′三点的抛物线的对称轴为直线x=m.求当k为何值时,|m|=数学公式

查看答案和解析>>

如图甲,在等腰直角三角形OAB中,∠OAB=90°,B点在第一象限,A点坐标为(1,0).△OCD与△OAB关于y轴对称.
(1)求经过D,O,B三点的抛物线的解析式;
(2)若将△OAB向上平移k(k>0)个单位至△O′A′B(如图乙),则经过D,O,B′三点的抛物线的对称轴在y轴的______.(填“左侧”或“右侧”)
(3)在(2)的条件下,设过D,O,B′三点的抛物线的对称轴为直线x=m.求当k为何值时,|m|=

查看答案和解析>>

如图1,△ABC是边长为4cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的速度都为1cm/s.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s).
作业宝
(1)当t为何值时,△PBQ是直角三角形?
(2)连接AQ、CP,相交于点M,如图2,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.

查看答案和解析>>


同步练习册答案