(3)拓展与延伸 查看更多

 

题目列表(包括答案和解析)

(1)问题探究

如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH交直线AB于点H,使∠AHK=∠ACD1D1MKHD2NKH,垂足分别为点MN.试探究线段D1M与线段D2N的数量关系,并加以证明.

(2)拓展延伸

①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1K2H2,分别交直线AB于点H1H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1MK1H1D2NK2H2,垂足分别为点MND1MD2N是否仍成立?若成立,给出证明;若不成立,说明理由.

②如图3,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1MD2N是否仍成立?(要求:在图3中补全图形,注明字母,直接写出结论,不需证明)

查看答案和解析>>

(1)问题探究

如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1正方形BCD2E2,过点C作直线KH交直线AB于点H,使∠AHK=∠ACD1D1MKHD2NKH,垂足分别为点MN.试探究线段D1M与线段D2N的数量关系,并加以证明.

(2)拓展延伸

①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1K2H2,分别交直线AB于点H1H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1MK1H1D2NK2H2,垂足分别为点MN.D1M=D2N是否仍成立?若成立,给出证明;若不成立,说明理由.

②如图3,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M=D2N是否仍成立?(要求:在图3中补全图形,注明字母,直接写出结论,不需证明)

图1                    图2                       图3

(第25题图)

查看答案和解析>>

(1)问题探究
如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C
作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N.试探究线段D1M与线段D2N的数量关系,并加以证明.
(2)拓展延伸
①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分别为点M,N.D1M=D2N是否仍成立?若成立,给出证明;若不成立,说明理由.
②如图3,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M=D2N是否仍成立?(要求:在
图3中补全图形,注明字母,直接写出结论,不需证明)

查看答案和解析>>

(1)问题探究
如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N.试探究线段D1M与线段D2N的数量关系,并加以证明.
(2)拓展延伸
①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分别为点M,N.D1M=D2N是否仍成立?若成立,给出证明;若不成立,说明理由.
②如图3,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M=D2N是否仍成立?(要求:在图3中补全图形,注明字母,直接写出结论,不需证明)作业宝

查看答案和解析>>

(1)问题探究
如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N,试探究线段D1M与线段D2N的数量关系,并加以证明。
(2)拓展延伸
①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使∠AH1K1=∠BH2K2=∠ACD1,作D1M⊥K1H1,D2N⊥K2H2,垂足分别为点M,N,D1M=D2N是否仍成立?若成立,给出证明;若不成立,说明理由。
②如图3,若将①中的”,其他条件不变.D1M=D2N是否仍成立?(要求:在图3中补全图形,注明字母,直接写出结论,不需证明)

查看答案和解析>>


同步练习册答案