若正边形A1A2-A内部任意一点P到各边的距离为..-..请问++-+是否为定值.如果是.请合理猜测出这个定值. 查看更多

 

题目列表(包括答案和解析)

阅读材料:
如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ARP+S△ACP=S△ABC,即:
1
2
AB•r1+
1
2
AC•r2=
1
2
AC•h,∴r1+r2=h(定值).
(1)理解与应用:
如图,在边长为3的正方形ABCD中,点E为对角线BD上的一点,且BE=BC,F为CE上一点,FM⊥BC于M,FN⊥BD于N,试利用上述结论求出FM+FN的长.
(2)类比与推理:
如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:
已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h(定值).
(3)拓展与延伸:
若正n边形A1A2…An,内部任意一点P到各边的距离为r1r2…rn,请问r1+r2+…+rn是否为定值?如果是,请合理猜测出这个定值.
精英家教网精英家教网

查看答案和解析>>

阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两 腰的距离分别为,腰上的高为h,连结AP,则,即: ,(1)理解与应用
如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在   三角形内任一点”,即:已知边长为2的等边△ABC内任意一点P到各边的距离分别为,试证明:.

(2)类比与推理
边长为2的正方形内任意一点到各边的距离的和等于        
(3)拓展与延伸
若边长为2的正n边形A1A2…An内部任意一点P到各边的距离为,请问是否为定值(用含n的式子表示),如果是,请合理猜测出这个定值。

查看答案和解析>>

阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两  腰的距离分别为,腰上的高为h,连结AP,则,即: ,(1)理解与应用

如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在    三角形内任一点”,即:已知边长为2的等边△ABC内任意一点P到各边的距离分别为,试证明:.

(2)类比与推理

边长为2的正方形内任意一点到各边的距离的和等于        

(3)拓展与延伸

若边长为2的正n边形A1A2…An内部任意一点P到各边的距离为,请问是否为定值(用含n的式子表示),如果是,请合理猜测出这个定值。

              

 

查看答案和解析>>

阅读材料:
如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ARP+S△ACP=S△ABC,即:数学公式AB•r1+数学公式AC•r2=数学公式AC•h,∴r1+r2=h(定值).
(1)理解与应用:
如图,在边长为3的正方形ABCD中,点E为对角线BD上的一点,且BE=BC,F为CE上一点,FM⊥BC于M,FN⊥BD于N,试利用上述结论求出FM+FN的长.
(2)类比与推理:
如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:
已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h(定值).
(3)拓展与延伸:
若正n边形A1A2…An,内部任意一点P到各边的距离为r1r2…rn,请问r1+r2+…+rn是否为定值?如果是,请合理猜测出这个定值.

查看答案和解析>>

阅读材料:如图,△ABC中,AB=ACP为底边BC上任意一点,点P到两腰的距离分别为,腰上的高为h,连结AP,则即:

(1)理解与应用    如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知边长为2的等边△ABC内任意一点P到各边的距离分别为,试证明:.

(2)类比与推理         边长为2的正方形内任意一点到各边的距离的和等于        

(3)拓展与延伸      若边长为2的正n边形A1A2An内部任意一点P到各边的距离为,请问是否为定值(用含n的式子表示),如果是,请合理猜测出这个定值。

             

查看答案和解析>>


同步练习册答案