(3)设直线与抛物线交于点E.F.与轴交于点M,抛物线与轴交于点N.若抛物线的对称轴为直线.△MNE与△MNF的面积之比为5:1.试判断△ABC的形状.并证明你的结论. 查看更多

 

题目列表(包括答案和解析)

精英家教网抛物线y=ax2+bx+c(a>0)经过点A(-3
3
,0
),B(
3
,0
)与y轴交于点C,设抛物线的顶点为D,在△BCD中,边CD的高为h.
(1)若c=ka,求系数k的值;
(2)当∠ACB=90°,求a及h的值;
(3)当∠ACB≥90°时,经过探究、猜想请你直接写出h的取值范围.
(不要求书写探究、猜想的过程)

查看答案和解析>>

抛物线y=
1
2
x2+(k+
1
2
)x+(k+1)(k为常数)与x轴交于A(x1,0)、B(x2,0)(x1<0<x2)两点,与y轴交于C点,且满足(OA+OB)2=OC2+16.
(1)求此抛物线的解析式;
(2)设M、N是抛物线在x轴上方的两点,且到x轴的距离均为1,点P是抛物线的顶点,问:过M、N、C三点的圆与直线CP是否只有一个公共点C?试证明你的结论.

查看答案和解析>>

抛物线y=数学公式x2+(k+数学公式)x+(k+1)(k为常数)与x轴交于A(x1,0)、B(x2,0)(x1<0<x2)两点,与y轴交于C点,且满足(OA+OB)2=OC2+16.
(1)求此抛物线的解析式;
(2)设M、N是抛物线在x轴上方的两点,且到x轴的距离均为1,点P是抛物线的顶点,问:过M、N、C三点的圆与直线CP是否只有一个公共点C?试证明你的结论.

查看答案和解析>>

抛物线y=ax2 +bx+c的顶点为P,与x轴的两个交点为M、N(点M在点N的左侧),△PMN的三个内角么∠P、∠M、∠N所对的边分别为p、m、n,且m =n,若关于x的方程(p -m) x2+2nx+(p+m)=0有两个相等的实数根.  
(1)试判断△PMN的形状;  
(2)当顶点P的坐标为(2,-1)时,求抛物线的解析式;  
(3)设抛物线与了轴的交点为Q.
求证:直线y=x-1将四边形MPNQ分成的两个图形的面积相等.

查看答案和解析>>

直线轴相交于点,连结,抛物线从点沿方向平移,与直线交于点,顶点点时停止移动.

(1)求线段所在直线的函数解析式;(2)设抛物线顶点的横坐标为,①用的代数式表示点的坐标;②当为何值时,线段最短;

(3)当线段最短时,相应的抛物线上是否存在点,使△ 的面积与△的面积相等,若存在,请求出点的坐标;若,不存在,请说明理由.

查看答案和解析>>


同步练习册答案