4.在抛物线上.当=0时.y取最小值.则m= 查看更多

 

题目列表(包括答案和解析)

已知抛物线y=2x2,⊙O与抛物线交于A、B两点,AB两点所在的直线为l,⊙O的半径为2。
(1)当x>xB时,抛物线上存在一动点C,则随着C点的向上运动,三角形ABC面积不断增加,问三角形ABC面积每秒的增加量△S是什么?(友情提醒:C点的速度为v0·s-1);
(2)存在一点D在劣弧AB上运动(不与A、B重合)设D(h,k),问抛物线上是否存在点E使得三角形ABD与三角形ABE的面积相等?若存在,求出点E;若不存在,请说明理由;
(3)F(m,n)(m>0)是抛物线y=2x2上的点,OF⊥FG,G(a,0)(a>m),△OFG的面积为S,且S=4n4,n是不大于40的整数,求OF2的最小值;
(4)在抛物线上取两点J、K,xJ<0,xk>0,连接OJ、JK、OK,使得角OKJ=60°,再以OK、OJ、JK分别作等边三角形OKL、OJM、OKN,请你求出经过M、N、L三点的抛物线的解析式。

查看答案和解析>>

如图,一元二次方程x2+2x﹣3=0的两根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).
(1)求此二次函数的解析式;
(2)设此抛物线的顶点为P,对称轴与线段AC相交于点G,则P点坐标为(    ),G点坐标为(    );
(3)在x轴上有一动点M,当MG+MA取得最小值时,求点M的坐标.

查看答案和解析>>

如图①,正方形的顶点的坐标分别为,顶点在第一象限.点P从点A出发,沿正方形按逆时针方向匀速运动,同时,点Q从点出发,沿x轴正方向以相同速度运动.当P点到达点C时,两点同时停止运动,设运动的时间为t秒.
(1)求正方形的边长.
(2)当点P在边上运动时,的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分(如图②所示),求两点的运动速度.
(3)求(2)中面积S(平方单位)与时间t(秒)的函数关系式及面积S取最大值时点P的坐标.
(4)若点保持(2)中的速度不变,则点P沿着AB边运动时,的大小随着时间t的增大而增大;沿着边运动时,的大小随着时间t的增大而减小.当点P沿着这两边运动时,使的点P有_____个.
(抛物线的顶点坐标是.)

查看答案和解析>>

x=2时,抛物线yax2bx+c取得最小值-1,并且抛物线与y轴交于点C(0,3),与x轴交于点AB

(1)求该抛物线的关系式;

(2)若点M(xy1),N(x+1,y2)都在该抛物线上,试比较y1y2的大小;

(3)D是线段AC的中点,E为线段AC上一动点(AC两端点除外),过点Ey轴的平行线EF与抛物线交于点F.问:是否存在△DEF与△AOC相似?若存在,求出点E的坐标;若不存在,则说明理由.

查看答案和解析>>

如图①,正方形ABCD的顶点A,B的坐标分别为,顶点C,D在第一象限.点P从点A出发,沿正方形按逆时针方向匀速运动,同时,点Q从点E(4,0)出发,沿x轴正方向以相同速度运动.当点P到达点C时,P,Q两点同时停止运动,设运动的时间为t秒.

(1)求正方形ABCD的边长.

(2)当点P在AB边上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分(如图②所示),求P,Q两点的运动速度.

(3)求(2)中面积S(平方单位)与时间t(秒)的函数关系式及面积取最大值时点的坐标.

(4)若点P,Q保持(2)中的速度不变,则点P沿着AB边运动时,∠OPQ的大小随着时间的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间的增大而减小.当点沿着这两边运动时,使∠OPQ=90°的点     个.

查看答案和解析>>


同步练习册答案