A. B. C. D.第Ⅱ卷 查看更多

 

题目列表(包括答案和解析)

已知均为正数,,则的最小值是            (    )

         A.            B.           C.             D.

第Ⅱ卷  (非选择题  共90分)

二、填空题:本大题共4小题,每小题4分,共16分,将答案填在题中的横线上。

查看答案和解析>>

 设  ,则的最大值.为(    )

    A.  B.  C. D.

 

第II卷(非选择题  共70分)

 

 

查看答案和解析>>

 已知,且,则 (     )

A.                         B.       

C.                         D.

 

第II卷(非选择题,共60分)

 

查看答案和解析>>

正项数列的前n项的乘积,则数列的前n项和中的最大值是                (    )

       A.    B.    C.    D.

第Ⅱ卷(非选择题,共90分)

查看答案和解析>>

设函数,则满足方程根的个数是(    )

A.1 个   B.2 个       C.3 个     D.无数个

第Ⅱ卷  非选择题(共100分)

查看答案和解析>>

19.解:(1)连接B1D1,ABCD―A1B1C1D1为四棱柱,

则在四边形BB1D1D中(如图),

得△D1O1B1≌△B1BO,可得∠D1O1B1=∠OBB1=90°,

即D1O1⊥B1O

   (2)解法一:连接OD1,△AB1C,△AD1C均为等腰

三角形,

且AB1=CB,AD1=CD1,所有OD1⊥AC,B1O⊥AC,

显然:∠D1OB1为所求二面角D1―AC―B1的平面角,

由:OD1=OB1=B1D=2知

解法二:由ABCD―A1B1C1D1为四棱柱,得面BB1D1D⊥面ABCD

所以O1D1在平面ABCD上的射影为BD,由四边形ABCD为正方形,AC⊥BD,由三垂线定理知,O1D1⊥AC。可得D1O1⊥平面AB1C

又因为B1O⊥AC,所以∠D1OB1所求二面角D1―AC―B1的平面角,

20.解:(1)曲线C上任意一点M到点F(0,1)的距离比它到直线的距离小1,

可得|MF|等于M到y=-1的距离,由抛物线的定义知,M点的轨迹为

   (2)当直线的斜率不存在时,它与曲线C只有一个交点,不合题意,

    当直线m与x轴不垂直时,设直线m的方程为

   代入    ①

    恒成立,

    设交点A,B的坐标分别为

∴直线m与曲线C恒有两个不同交点。

    ②        ③

故直线m的方程为

21.解:(1)由已知得

   

   (2)

   

   

   (3)