(2)若ABC的面积. 20090520 查看更多

 

题目列表(包括答案和解析)

在△ABC中,角A,B,C所对的边长分别为a,b,c,若△ABC的周长为
2
+1
,且sinA+sinB=
2
sinC

(1)求边AB的长;
(2)若△ABC的面积为
1
6
sinC
,求角C的度数.

查看答案和解析>>

△ABC的内角A,B,C所对的边a,b,c且ccosB与bcosC的等差中项为2acosA.
(1)求cosA的值;
(2)若△ABC的面积是
15
,求
AB
AC
的值.

查看答案和解析>>

已知三角形的三内角A、B、C所对边的长分别为a、b、c,设向量
m
=(2a-c,b)
n
=(cosC,cosB)
,若
m
n

(1)求角B的大小;
(2)若△ABC的面积为
3
,求AC边的最小值,并指明此时三角形的形状.

查看答案和解析>>

已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+
3
asinC-b-c=0

(1)求A;
(2)若△ABC的面积S=5
3
,b=5,求sinBsinC的值.

查看答案和解析>>

在△ABC中,角A、B、C的对边分别为a、b、c,满足2cos2(A+B)=2cosC+cos2C.
(1)求角C;
(2)若△ABC的面积为S=4
3
(3),求a+b的最小值.

查看答案和解析>>

19.解:(1)连接B1D1,ABCD―A1B1C1D1为四棱柱,

则在四边形BB1D1D中(如图),

得△D1O1B1≌△B1BO,可得∠D1O1B1=∠OBB1=90°,

即D1O1⊥B1O

   (2)解法一:连接OD1,△AB1C,△AD1C均为等腰

三角形,

且AB1=CB,AD1=CD1,所有OD1⊥AC,B1O⊥AC,

显然:∠D1OB1为所求二面角D1―AC―B1的平面角,

由:OD1=OB1=B1D=2知

解法二:由ABCD―A1B1C1D1为四棱柱,得面BB1D1D⊥面ABCD

所以O1D1在平面ABCD上的射影为BD,由四边形ABCD为正方形,AC⊥BD,由三垂线定理知,O1D1⊥AC。可得D1O1⊥平面AB1C

又因为B1O⊥AC,所以∠D1OB1所求二面角D1―AC―B1的平面角,

20.解:(1)曲线C上任意一点M到点F(0,1)的距离比它到直线的距离小1,

可得|MF|等于M到y=-1的距离,由抛物线的定义知,M点的轨迹为

   (2)当直线的斜率不存在时,它与曲线C只有一个交点,不合题意,

    当直线m与x轴不垂直时,设直线m的方程为

   代入    ①

    恒成立,

    设交点A,B的坐标分别为

∴直线m与曲线C恒有两个不同交点。

    ②        ③

故直线m的方程为

21.解:(1)由已知得

   

   (2)

   

   

   (3)