的直线m与曲线C交于A.B两点.设的面积为..求直线方程. 20090520 查看更多

 

题目列表(包括答案和解析)

若点P在直线l1:x+y+3=0上,过点P的直线l2与曲线C:(x-5)2+y2=16只有一个公共点M,则|PM|的最小值为
 

查看答案和解析>>

若点P在直线l1:x+y+3=0上,过点P的直线l2与曲线C:(x-5)2+y2=16相切于点M,则|PM|的最小值为(  )
A、
2
B、2
C、2
2
D、4

查看答案和解析>>

已知点A(-1,2),B(0,1),动点P满足|PA|=
2
|PB|

(Ⅰ)若点P的轨迹为曲线C,求此曲线的方程;
(Ⅱ)若点Q在直线l1:3x-4y+12=0上,直线l2经过点Q且与曲线C有且只有一个公共点M,求|QM|的最小值.

查看答案和解析>>

已知点A(2,0),B(2,0),曲线C上的动点P满足

       (1)求曲线C的方程;

       (2)若过定点M(0,2)的直线l与曲线C有交点,求直线l的斜率k的取值范围;

       (3)若动点Q(x,y)在曲线C上,求的取值范围.

 

查看答案和解析>>

已知点A(-2,0),B(2,0),直线PA与直线PB斜率之积为-数学公式,记点p的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设M,N是曲线C上任意两点,且|数学公式-数学公式|=|数学公式+数学公式|,问直线MN是否恒过某定点?若是,请求出定点坐标;否则,请说明理由.

查看答案和解析>>

19.解:(1)连接B1D1,ABCD―A1B1C1D1为四棱柱,

则在四边形BB1D1D中(如图),

得△D1O1B1≌△B1BO,可得∠D1O1B1=∠OBB1=90°,

即D1O1⊥B1O

   (2)解法一:连接OD1,△AB1C,△AD1C均为等腰

三角形,

且AB1=CB,AD1=CD1,所有OD1⊥AC,B1O⊥AC,

显然:∠D1OB1为所求二面角D1―AC―B1的平面角,

由:OD1=OB1=B1D=2知

解法二:由ABCD―A1B1C1D1为四棱柱,得面BB1D1D⊥面ABCD

所以O1D1在平面ABCD上的射影为BD,由四边形ABCD为正方形,AC⊥BD,由三垂线定理知,O1D1⊥AC。可得D1O1⊥平面AB1C

又因为B1O⊥AC,所以∠D1OB1所求二面角D1―AC―B1的平面角,

20.解:(1)曲线C上任意一点M到点F(0,1)的距离比它到直线的距离小1,

可得|MF|等于M到y=-1的距离,由抛物线的定义知,M点的轨迹为

   (2)当直线的斜率不存在时,它与曲线C只有一个交点,不合题意,

    当直线m与x轴不垂直时,设直线m的方程为

   代入    ①

    恒成立,

    设交点A,B的坐标分别为

∴直线m与曲线C恒有两个不同交点。

    ②        ③

故直线m的方程为

21.解:(1)由已知得

   

   (2)

   

   

   (3)