如果一个函数的图象关于直线对称,则称此函数为自反函数. 使得函数为自反函数的一组实数的取值为 查看更多

 

题目列表(包括答案和解析)

已知两个函数的图象关于直线y=x对称,如果其中一个函数是那么另一个函数是

[    ]

查看答案和解析>>

函数

⑴ 求证:的图像关于直线y=x对称;

⑵ 函数的图像与函数的图像有且只有一个交点,求实数的值;

⑶ 是否存在圆心在原点的圆与函数的图象有且只有三个交点,如果存在,则求出此圆的半径;如果不存在,请说明理由。

查看答案和解析>>

函数
⑴求证:的图像关于直线y=x对称;
⑵函数的图像与函数的图像有且只有一个交点,求实数的值;
⑶是否存在圆心在原点的圆与函数的图象有且只有三个交点,如果存在,则求出此圆的半径;如果不存在,请说明理由。

查看答案和解析>>

下列说法中,正确的个数为( )
①函数y=f(x)与函数y=f(-x)的图象关于直线x=0对称;
②函数y=f(x)与函数y=-f(x)的图象关于直线y=0对称;
③函数y=f(x)与函数y=-f(-x)的图象关于坐标原点对称;
④如果函数y=f(x)对于一切x∈R,都有f(a+x)=f(a-x),那么y=f(x)的图象关于直线x=a对称.
A.1
B.2
C.3
D.4

查看答案和解析>>

下列说法中,正确的个数为(  )
①函数y=f(x)与函数y=f(-x)的图象关于直线x=0对称;
②函数y=f(x)与函数y=-f(x)的图象关于直线y=0对称;
③函数y=f(x)与函数y=-f(-x)的图象关于坐标原点对称;
④如果函数y=f(x)对于一切x∈R,都有f(a+x)=f(a-x),那么y=f(x)的图象关于直线x=a对称.

查看答案和解析>>

一.选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

C

A

A

B

D

A

D

D

A

B

A

二.填空题

   13. .;       14. ;      15. 15;         16. ,可以填写任意实数

三、解答题

17.(Ⅰ)

(Ⅱ)

,从而,即 .所以,函数轴交点的横坐标为.           12分

18.由图可知,参加活动1次、2次和3次的学生人数分别为5、25和20.

(I)该班学生参加活动的人均次数为=.     3分

(II)从该班中任选两名学生,他们参加活动次数恰好相等的概率为.                                               6分

(III)从该班中任选两名学生,记“这两人中一人参加1次活动,另一人参加2次活动”为事件,“这两人中一人参加2次活动,另一人参加3次活动”为事件,“这两人中一人参加1次活动,另一人参加3次活动”为事件.易知

;                     8分

.                                     10分

的分布列:

0

1

2

的数学期望:.                            12分

19.(Ⅰ)∵AD=2AB=2,E是AD的中点,

∴△BAE,△CDE是等腰直角三角形,

易知,∠BEC=90°,即BE⊥EC    

又∵平面D′EC⊥平面BEC,面D′EC∩面BEC=EC,

∴BE⊥面D′EC,又CD′面D′EC,∴BE⊥CD′ 6分

(Ⅱ)法一:设M是线段EC的中点,过M作MF⊥BC

垂足为F,连接D′M,D′F,则D′M⊥EC

∵平面D′EC⊥平面BEC,∴D′M⊥平面EBC,

∴MF是D′F在平面BEC上的射影,

由三垂线定理得:D′F⊥BC,∴∠D′FM是二面D′―BC―E的平面角.

在Rt△D′MF中,。∴

即二面角D′―BC―E的正切值为.                         12分

法二:如图,以EB,EC为x轴,y轴,过E垂直于平面BEC的射线为z轴,建立空间直角坐标系,则

设平面BEC的法向量为;平面D′BC的法向量为

.取 

。 

∴二面角D′―BC―E的的正切值为.

20. (Ⅰ)设C方程为,则b = 1.

∴椭圆C的方程为  …………………………………………………6分

(Ⅱ)假设存在直线,使得点的垂心.易知直线的斜率为,从而直线的斜率为1.设直线的方程为,代如椭圆的方程,并整理可得.设,则.于是

解之得.

时,点即为直线与椭圆的交点,不合题意.当时,经检验知和椭圆相交,符合题意.  所以,当且仅当直线的方程为时, 点的垂心.        12分

21. (Ⅰ)注意到当时, 直线是抛物线的对称轴,分以下几种情况讨论.

(1) 当a>0时,函数y=, 的图象是开口向上的抛物线的一段,

<0知上单调递增,∴.

(2)当a=0时,, ,∴.      3分

(3)当a<0时,函数y=, 的图象是开口向下的抛物线的一段,

,即                4分

,即,则       5分

,即,则.              6分

综上有                                7分

(Ⅱ)当时,,所以, g(a)在上单调递增,于是由g(a)的不减性知等价于

解之得.所以,的取值范围为.               12分

22.(Ⅰ)对一切,即  ,      ()                            4分

两式相减,得:

 

       

       ∴是等差数列,且, .                                    8分

说明:本小题也可以运用先猜后证(数学归纳法)的方法求解.给分时,猜想正确得3分,证明给5分.

(Ⅱ) 由,,因此,只需证明.                                              10分

时,结论显然成立.当时,

   

所以,原不等式成立.                                                          14分

 

 


同步练习册答案