题目列表(包括答案和解析)
(本题满分12分)
已知椭圆
的中心在坐标原点,焦点在
轴上,椭圆
上的点到焦点距离的最大值为
,最小值为
.
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
相交于
两点(
不是左右顶点),且以
为直径的圆过椭圆
的右顶点.求证:直线
过定点,并求出该定点的坐标.
(本题满分12分)
已知椭圆
的中心在坐标原点,焦点在
轴上,椭圆
上的点到焦点距离的最大值为
,最小值为
.
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
相交于
两点(
不是左右顶点),且以
为直径的圆过椭圆
的右顶点.求证:直线
过定点,并求出该定点的坐标.
(本题满分12分)
已知椭圆
的中心在原点,焦点在
轴上,左右焦点分别为
,且
,点
)在椭圆
上.
(1)求椭圆
的方程;
(2)过
的直线
与椭圆
相交于
、
两点,且△
的面积
,求以
为圆心且与直线
相切的圆的方程.
(本题满分12分)
已知椭圆
的焦点在
轴上,中心在原点,离心率
,直线
和以原点为圆心,椭圆
的短半轴为半径的圆
相切.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设椭圆
的左、右顶点分别为
、
,点
是椭圆上异于
、
的任意一点,设直线
、
的斜率分别为
、
,证明
为定值;
(Ⅲ)设椭圆方程
,
、
为长轴两个端点,
为椭圆上异于
、
的点,
、
分别为直线
、
的斜率,利用上面(Ⅱ)的结论得
( )(只需直接写出结果即可,不必写出推理过程).
(本题满分12分)已知椭圆E:
(其中
),直 线L与椭圆只有一个公共点T;两条平行于y轴的直线
分别过椭圆的左、右焦点F1、F2,且直线L分别相交于A、B两点.
(Ⅰ)若直线L在
轴上的截距为
,求证: 直线L斜率的绝对值与椭圆E的离心率相等;(Ⅱ)若
的最大值为1200,求椭圆E的方程.
一.选择题
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
D
C
B
A
C
D
D
D
A
B
A
A
二.填空题
13.4; 14.
; 15.15; 16.
,
可以填写任一实数.
三.解答题
17. (Ⅰ)列表:


2
6
10
14

0





1
3
1

1
描点作图,得图象如下.
6分
(Ⅱ)

所以,当
,即
时,函数
取得最小值
. 12分
18.由图可知,参加活动1次、2次和3次的学生人数分别为5、25和20.
(I)该班学生参加活动的人均次数为
=
. 6分
(II)从该班中任选两名学生,他们参加活动次数恰好相等的概率为
.
12分
19.(Ⅰ)∵AD=2AB=2,E是AD的中点,
∴△BAE,△CDDE是等腰直角三角形,
易知,∠BEC=90°,即BE⊥EC
又∵平面D′EC⊥平面BEC,面D′EC∩面BEC=EC,
∴BE⊥面D′EC,又CD′
面D′EC,∴BE⊥CD′.
6分
(Ⅱ)法一:设M是线段EC的中点,过M作MF⊥BC
垂足为F,连接D′M,D′F,则D′M⊥EC
∵平面D′EC⊥平面BEC,
∴D′M⊥平面EBC,
∴MF是D′F在平面BEC上的射影,
由三垂线定理得:D′F⊥BC
∴∠D′FM是二面D′―BC―E的平面角.
在Rt△D′MF中,
∴
,
即二面角D′―BC―E的正切值为
.
12分
法二:如图,以EB,EC为x轴,y轴,过E垂直于平面BEC的射线为z轴,建立空间直角坐标系,
则
设平面BEC的法向量为
;平面D′BC的法向量为


由
取
∴

∴二面角D′―BC―E的正切值为
.
12分
20.(I)
,

(II)
由(I)知

21(Ⅰ)设椭圆C的方程为
,则由题意知b = 1.

∴椭圆C的方程为
…………………………………………………6分
(Ⅱ)易知直线
的斜率为
,从而直线
的斜率为1.设直线的方程为
,代如椭圆的方程,并整理可得
.设
,则
,
.于是


解之得
或
.
当
时,点
即为直线
与椭圆的交点,不合题意.当
时,经检验知
和椭圆相交,符合题意.
所以,当且仅当直线
的方程为
时, 点
是
的垂心. 12分
22.(Ⅰ)对一切
有

于是,
(
) 5分
(Ⅱ)由
及
两式相减,得: 

∴
. 10分
(Ⅲ) 由于
,
所以,
14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com