4.数列极限的综合题形式多样.解题思路灵活.但万变不离其宗.就是离不开数列极限的概念和性质.离不开数学思想方法.只要能把握这两方面.就会迅速打通解题思路. 查看更多

 

题目列表(包括答案和解析)

下列关于数列极限的说法中,正确的是()


  1. A.
    摆动数列一定不存在极限
  2. B.
    递增数列一定不存在极限
  3. C.
    一个数列的极限可能不止一个数值
  4. D.
    数列的极限反映数列项的变化趋势

查看答案和解析>>

某市投资甲、乙两个工厂,2011年两工厂的产量均为100万吨,在今后的若干年内,甲工厂的年产量每年比上一年增加10万吨,乙工厂第年比上一年增加万吨,记2011年为第一年,甲、乙两工厂第年的年产量分别为万吨和万吨.

(Ⅰ)求数列的通项公式;

(Ⅱ)若某工厂年产量超过另一工厂年产量的2倍,则将另一工厂兼并,问到哪一年底,其中哪一个工厂被另一个工厂兼并.

【解析】本试题主要考查数列的通项公式的运用。

第一问由题得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98

第二问,考查等差数列与等比数列的综合,考查用数列解决实际问题,其步骤是建立数列模型,进行计算得出结果,再反馈到实际中去解决问题.由于比较两个工厂的产量时两个函数的形式较特殊,不易求解,故采取了列举法,数据列举时作表格比较简捷.

解:(Ⅰ)由题得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98……6分

(Ⅱ)由于n,各年的产量如下表 

n       1     2    3      4     5     6     7     8    

an      100   110   120   130   140   150  160   170

bn      100   102    106  114   130   162   226   354

2015年底甲工厂将被乙工厂兼并

 

查看答案和解析>>

(本小题满分12分)

已知不等式为大于2的整数,表示不超过的最大整数. 设数列的各项为正,且满足

   (Ⅰ)证明

(Ⅱ)猜测数列是否有极限?如果有,写出极限的值(不必证明);

(Ⅲ)试确定一个正整数N,使得当时,对任意b>0,都有

查看答案和解析>>

(湖北卷)(本小题满分14分)

       已知不等式为大于2的整数,表示不超过的最大整数. 设数列的各项为正,且满足

   (Ⅰ)证明

(Ⅱ)猜测数列是否有极限?如果有,写出极限的值(不必证明);

(Ⅲ)试确定一个正整数N,使得当时,对任意b>0,都有

查看答案和解析>>

已知数列{an}满足:an=log(n+1)(n+2),n∈N+,我们把使a1•a2•a3•…•ak为整数的数k(k∈N+)叫做数列{an}的理想数.给出下列关于数列{an}的几个结论:
①数列{an}的最小理想数是2;
②数列{an}的理想数k的形式可以表示为k=4n-2;
③在区间[1,2011]内{an}的所有理想数之和为2026;
④对任意的n∈N+,有an+1>an
其中正确的序号为
 

查看答案和解析>>


同步练习册答案