若一个等差数列的前3项和为34.最后3项的和为146.且所有项的和为390.则这个数列的项数为(A) A 13 B 12 C 11 D 10 查看更多

 

题目列表(包括答案和解析)

把已知正整数n表示为若干个正整数(至少3个,且可以相等)之和的形式,若这几个正整数可以按一定顺序构成等差数列,则称这些数为n的一个等差分拆.将这些正整数的不同排列视为相同的分拆.如:(1,4,7)与(7,4,1)为12的相同等差分拆.问正整数36的不同等差分拆的个数是(  )

查看答案和解析>>

德国数学家在1937年提出了一个著名的猜想:“任给一个正整数n,若n是偶数,则将它减半(即
n
2
);若n是奇数,则将它乘3加1(即3n+1).不断重复这样的运算,经过有限步后,一定可以得到1”.如6→3→10→5→16→8→4→2→1,如果对正整数n(首项),按上述规则实施变换(注:1可以多次出现)后的第八项为1,那么n的所有可能值共有(  )

查看答案和解析>>

把已知正整数n表示为若干个正整数(至少3个,且可以相等)之和的形式,若这几个正整数可以按一定顺序构成等差数列,则称这些数为n的一个等差分拆.将这些正整数的不同排列视为相同的分拆.如:(1,4,7)与(7,1,4)为12的相同等差分拆.正整数27的不同等差分拆有(  )个.
A、9B、10C、11D、12

查看答案和解析>>

把已知正整数n表示为若干个正整数(至少3个,且可以相等)之和的形式,若这几个正整数可以按一定顺序构成等差数列,则称这些数为n的一个等差分拆.将这些正整数的不同排列视为相同的分拆.如:(1,4,7)与(7,4,1)为12的相同等差分拆.问正整数30的不同等差分拆有
19
19
个.

查看答案和解析>>

(08年金华一中理)    (14分) 9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没有发芽,则这个坑需要补种。

(1)求甲坑不需要补种的概率;

(2)求3个坑中恰有1个坑不需要补种的概率;

    (3)求有坑需要补种的概率。

查看答案和解析>>


同步练习册答案