在解答应用问题时.我们强调“评价 这一步不可少!它是解题者的自我调节.比如本题求解过程中若令1.01≈1.算得结果为x≤98公顷.自然会问:耕地减少这么多.符合国家保持耕地的政策吗?于是进行调控.检查发现是错在1.01的近似计算上. A M C D B 查看更多

 

题目列表(包括答案和解析)

在解决某些问题时可以使用某些已知的结论或公式,正确使用这些结论可以简化运算,使问题的解决更快捷.那么对于直线的参数方程又有哪些常用的结论呢?

查看答案和解析>>

定义在[1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);
②当2≤x≤4时,f(x)=1-|x-3|.试解答下列问题:
(1)设c>2,方程f(x)=2的根由小到大依次记为a1,a2,a3,…,an,…,试证明:数列a2n-1+a2n为等比数列;
(2)①是否存在常数c,使函数的所有极大值点均落在同一条直线上?若存在,试求出c的所有取值并写出直线方程;若不存在,试说明理由;②是否存在常数c,使函数的所有极大值点均落在同一条以原点为顶点的抛物线上?若存在,试求出c的所有取值并写出抛物线方程;若不存在,试说明理由.

查看答案和解析>>

(2006•静安区二模)某种洗衣机在洗涤衣服时,需经过进水、清洗、排水、脱水四个连续的过程.假设进水时水量匀速增加,清洗时水量保持不变.已知进水时间为4分钟,清洗时间为12分钟,排水时间为2分钟,脱水时间为2分钟.洗衣机中的水量y(升)与时间x(分钟)之间的关系如下表所示:
x 0 2 4 16 16.5 17 18
y 0 20 40 40 29.5 20 2
请根据表中提供的信息解答下列问题:
(1)试写出当x∈[0,16]时y关于x的函数解析式,并画出该函数的图象;
(2)根据排水阶段的2分钟点(x,y)的分布情况,可选用y=
a
x
+b
或y=c(x-20)2+d(其中a、b、c、d为常数),作为在排水阶段的2分钟内水量y与时间x之间关系的模拟函数.试分别求出这两个函数的解析式;
(3)请问(2)中求出的两个函数哪一个更接近实际情况?(写出必要的步骤)

查看答案和解析>>

近日国内某大报纸有如下报导:
加薪的学问
学数学,其实是要使人聪明,使人的思维更加缜密.在美国广为流传的一道数学题目:老板给出两个加工资的方案,一是每年年末加一千;二是每半年结束时加300元,请选一种.一般不擅长数学的,很容易选前者,因为一年加一千元总比两半年共600元要多.其实,由于加工资是累计的,时间稍长,往往第二种方案更有利.例如,在二年的年末,依第一种方案可以加得1000+2000=3000元,而第二种方案在第一年加得300+600元,第二年加得900+1200=2100元,总数也是3000元.但到第三年,第一方案可得1000+2000+3000=6000元,第二种方案则为300+600+900+1200+1500+1800=6300元,比第一方案多了300元.第四年、第五年会更多.因此,你若会在该公司工作三年以上,则应选择第二方案.根据以上材料,解答下列问题:
(1)如果在该公司干10年,问选择第二方案比选择第一方案多加薪水多少元?
(2)如果第二方案中的每半年加300元改成每半年加a元,问a取何值时,总是选择第二方案比选择第一方案多加薪?

查看答案和解析>>

已知函数f(x)=
4x
x2+a

在探究a=1时,函数f(x)在区间[0,+∞)上的最大值问题.为此,我们列表如下
y 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
请观察表中y值随x值变化的特点,解答以下两个问题.
(1)写出函数f(x)在[0,+∞)(a=1)上的单调区间;指出在各个区间上的单调性,并对其中一个区间的单调性用定义加以证明.
(2)写出函数f(x)(a=1)的定义域,并求f(x)值域.

查看答案和解析>>

例10.(2004年重庆卷)某工厂生产某种产品,已知该产品的月生产量(吨)与每吨产品的价格(元/吨)之间的关系式为:,且生产x吨的成本为(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入─成本)

解:每月生产x吨时的利润为

               

  ,故它就是最大值点,且最大值为:

        答:每月生产200吨产品时利润达到最大,最大利润为315万元.