对于三次函数 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)

已知二次函数和“伪二次函数” ),

(I)证明:只要,无论取何值,函数在定义域内不可能总为增函数;

(II)在二次函数图象上任意取不同两点,线段中点的横坐标为,记直线的斜率为

(i)求证:

(ii)对于“伪二次函数”,是否有(i)同样的性质?证明你的结论.

请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分

查看答案和解析>>

本题共有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则以所做的前2题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
变换T1是逆时针旋转90°的旋转变换,对应的变换矩阵为M1,变换T2对应的变换矩阵是
(I)求点P(2,1)在T1作用下的点Q的坐标;
(II)求函数y=x2的图象依次在T1,T2变换的作用下所得的曲线方程.
(2)选修4-4:极坐标系与参数方程
从极点O作一直线与直线l:ρcosθ=4相交于M,在OM上取一点P,使得OM•OP=12.
(Ⅰ)求动点P的极坐标方程;
(Ⅱ)设R为l上的任意一点,试求RP的最小值.
(3)选修4-5:不等式选讲
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集为,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x-1)>b对一切实数x恒成立,求实数b的取值范围.

查看答案和解析>>

(本小题满分12分)
已知点列、…、(n∈N)顺次为一次函数图像上的点,点列、…、(n∈N)顺次为x轴正半轴上的点,其中(0<a<1),对于任意n∈N,点构成一个顶角的顶点为的等腰三角形。

(1)数列的通项公式,并证明是等差数列;
(2)证明为常数,并求出数列的通项公式;
(3)上述等腰三角形中,是否存在直角三角形?若有,求出此时a值;若不存在,请说明理由。

查看答案和解析>>

(本小题满分12分)

已知点列、…、(n∈N)顺次为一次函数图像上的点,点列、…、(n∈N)顺次为x轴正半轴上的点,其中(0<a<1),对于任意n∈N,点构成一个顶角的顶点为的等腰三角形。

(1)数列的通项公式,并证明是等差数列;

(2)证明为常数,并求出数列的通项公式;

(3)上述等腰三角形中,是否存在直角三角形?若有,求出此时a值;若不存在,请说明理由。

 

查看答案和解析>>

(本小题满分12分)
已知点列、…、(n∈N)顺次为一次函数图像上的点,点列、…、(n∈N)顺次为x轴正半轴上的点,其中(0<a<1),对于任意n∈N,点构成一个顶角的顶点为的等腰三角形。

(1)数列的通项公式,并证明是等差数列;
(2)证明为常数,并求出数列的通项公式;
(3)上述等腰三角形中,是否存在直角三角形?若有,求出此时a值;若不存在,请说明理由。

查看答案和解析>>


同步练习册答案