题目列表(包括答案和解析)
已知椭圆![]()
的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(I)求椭圆
的方程;
(II)若过点
(2,0)的直线与椭圆
相交于两点
,设
为椭圆上一点,且满足
(O为坐标原点),当
<
时,求实数
的取值范围.
【解析】本试题主要考查了椭圆的方程以及直线与椭圆的位置关系的运用。
第一问中,利用![]()
第二问中,利用直线与椭圆联系,可知得到一元二次方程中
,可得k的范围,然后利用向量的
<
不等式,表示得到t的范围。
解:(1)由题意知
![]()
已知二次函数
的二次项系数为
,且不等式
的解集为
,
(1)若方程
有两个相等的根,求
的解析式;
(2)若
的最大值为正数,求
的取值范围.
【解析】第一问中利用∵f(x)+2x>0的解集为(1,3),
设出二次函数的解析式,然后利用判别式得到a的值。
第二问中,
解:(1)∵f(x)+2x>0的解集为(1,3),
①
由方程![]()
②
∵方程②有两个相等的根,
∴
,
即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5
a=-1/5代入①得:![]()
(2)由![]()
![]()
![]()
由
解得:
![]()
故当f(x)的最大值为正数时,实数a的取值范围是![]()
| x2 |
| a2 |
| y2 |
| b2 |
| S△CBD |
| S△CAE |
| 1 |
| 6 |
| y2 | 3 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com