题目列表(包括答案和解析)
(本小题满分14分)
已知函数
。
(1)证明:![]()
(2)若数列
的通项公式为
,求数列
的前
项和
;w.w.w.k.s.5.u.c.o.m
![]()
(3)设数列
满足:
,设
,
若(2)中的
满足对任意不小于2的正整数
,
恒成立,
试求
的最大值。
(本小题满分14分)已知
,点
在
轴上,点
在
轴的正半轴,点
在直线
上,且满足
,
. w.w.w.k.s.5.u.c.o.m
![]()
(Ⅰ)当点
在
轴上移动时,求动点
的轨迹
方程;
(本小题满分14分)设函数![]()
(1)求函数
的单调区间;
(2)若当
时,不等式
恒成立,求实数
的取值范围;w.w.w.k.s.5.u.c.o.m
(本小题满分14分)
已知
,其中
是自然常数,![]()
(1)讨论
时,
的单调性、极值;w.w.w.k.s.5.u.c.o.m
![]()
(2)求证:在(1)的条件下,
;
(3)是否存在实数
,使
的最小值是3,若存在,求出
的值;若不存在,说明理由.
(本小题满分14分)
设数列
的前
项和为
,对任意的正整数
,都有
成立,记
。
(I)求数列
的通项公式;
(II)记
,设数列
的前
项和为
,求证:对任意正整数
都有
;
(III)设数列
的前
项和为
。已知正实数
满足:对任意正整数
恒成立,求
的最小值。
一、选择题
1.C 2.B 3.B 4.D 5.B 6.C
7.D 8.C 9.C 10.C
二、填空题
11.
12.
13.
14.2 15.30°
三、解答题
16.解:(Ⅰ)由
,根据正弦定理得
,所以
,
由
为锐角三角形得
.………………………………………………7分
(Ⅱ)根据余弦定理,得

.
所以,
.………………………………………………14分
17.解:(Ⅰ)记
表示事件:“
位顾客中至少
位采用一次性付款”,则
表示事件:“
位顾客中无人采用一次性付款”.
,
.………………………………………………7分
(Ⅱ)记
表示事件:“
位顾客每人购买
件该商品,商场获得利润不超过
元”.
表示事件:“购买该商品的
位顾客中无人采用分期付款”.
表示事件:“购买该商品的
位顾客中恰有
位采用分期付款”.
则
.
,
.



.……………………………………14分
18.解法一:(1)作
,垂足为
,连结
,由侧面
底面
,得
底面
.
因为
,所以
,又
,故
为等腰直角三角形,
,
由三垂线定理,得
.………………………7分
(Ⅱ)由(Ⅰ)知
,
依题设
,
故
,由
,
,
.
又
,作
,垂足为
,
则
平面
,连结
.
为直线
与平面
所成的角.

所以,直线
与平面
所成角的正弦值为
.………………………………………………14分
解法二:(Ⅰ)作
,垂足为
,连结
,由侧面
底面
,得
平面
.
因为
,所以
.
又
,
为等腰直角三角形,
.
如图,以
为坐标原点,
为
轴正向,建立直角坐标系
,
因为
,
,
又
,所以
,
,
.
,
,
,
,所以
.…………………7分
(Ⅱ)
,
.
与
的夹角记为
,
与平面
所成的角记为
,因为
为平面
的法向量,所以
与
互余.
,
,
所以,直线
与平面
所成角的正弦值为
.………………………14分
19.解:(Ⅰ)
,
因为函数
在
及
取得极值,则有
,
.
即
解得
,
.………………………7分
(Ⅱ)由(Ⅰ)可知,
,
.
当
时,
;
当
时,
;
当
时,
.
所以,当
时,
取得极大值
,又
,
.
则当
时,
的最大值为
.
因为对于任意的
,有
恒成立,
所以
,
解得
或
,
因此
的取值范围为
.………………………14分
20.解:(Ⅰ)设
的公差为
,
的公比为
,则依题意有
且
解得
,
.
所以
,
.………………………6分
(Ⅱ)
.
,①
,②
②-①得
,


.………………………12分
21.证明:(Ⅰ)椭圆的半焦距
,
由
知点
在以线段
为直径的圆上,
故
,
所以,
.………………………6分
(Ⅱ)(?)当
的斜率
存在且
时,
的方程为
,代入椭圆方程
,并化简得
.
设
,
,则
,
,
;
因为
与
相交于点
,且
的斜率为
.
所以,
.
四边形
的面积
.
当
时,上式取等号.………………………10分
(?)当
的斜率
或斜率不存在时,四边形
的面积
.……………………11分
综上,四边形
的面积的最小值为
.………………………12分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com