(Ⅱ)设.求证:数列中任意不同的三项都不可能成为等比数列. 查看更多

 

题目列表(包括答案和解析)

若数列{an}是首项为6-12t,公差为6的等差数列;数列{bn}的前n项和为Sn=3n-t.
(1)求数列{an}和{bn}的通项公式;
(2)若数列{bn}是等比数列,试证明:对于任意的n(n∈N,n≥1),均存在正整数Cn,使得bn+1=a,并求数列{cn}的前n项和Tn
(3)设数列{dn}满足dn=an•bn,且{dn}中不存在这样的项dt,使得“dk<dk-1与dk<dk+1”同时成立(其中k≥2,k∈N*),试求实数t的取值范围.

查看答案和解析>>

若数列{an}是首项为6-12t,公差为6的等差数列;数列{bn}的前n项和为Sn=3n-t.
(1)求数列{an}和{bn}的通项公式;
(2)若数列{bn}是等比数列,试证明:对于任意的n(n∈N,n≥1),均存在正整数Cn,使得bn+1=a,并求数列{cn}的前n项和Tn
(3)设数列{dn}满足dn=an•bn,且{dn}中不存在这样的项dt,使得“dk<dk-1与dk<dk+1”同时成立(其中k≥2,k∈N*),试求实数t的取值范围.

查看答案和解析>>

(2013•盐城一模)若数列{an}是首项为6-12t,公差为6的等差数列;数列{bn}的前n项和为Sn=3n-t.
(1)求数列{an}和{bn}的通项公式;
(2)若数列{bn}是等比数列,试证明:对于任意的n(n∈N,n≥1),均存在正整数Cn,使得bn+1=a cn,并求数列{cn}的前n项和Tn
(3)设数列{dn}满足dn=an•bn,且{dn}中不存在这样的项dt,使得“dk<dk-1与dk<dk+1”同时成立(其中k≥2,k∈N*),试求实数t的取值范围.

查看答案和解析>>

等差数列的前项和为

(Ⅰ)求数列的通项与前项和

(Ⅱ)设,求证:数列中任意不同的三项都不可能成为等比数列.

查看答案和解析>>

 等差数列的前项和为

   (Ⅰ)求数列的通项与前项和

   (Ⅱ)设,求证:数列中任意不同的三项都不可能成为等比数列

 

 

 

 

 

 

 

 

查看答案和解析>>


同步练习册答案