题目列表(包括答案和解析)
、某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天100颗种子的发芽数,如下
|
日期 |
12月1日 |
12月2日 |
12月3日 |
12月4日 |
12月5日 |
|
温差 |
10 |
11 |
13 |
12 |
8 |
|
发芽数 |
23 |
25 |
30 |
26 |
16 |
该农科所确定的研究方案是:先从这五组数据中选取两组,用剩下的3组数据求线性回归方程,再用被选取点2组数据进行检验
(1)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求
关于
的线性回归方程
;
(2)若线性回归方程得到的估计数据与所选点检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得到的线性回归方程是否可靠?
参考公式:
,![]()
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 5 |
| 1 |
| 2 |
| 2 |
| 5 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
一. DCADB CCDAC
二.11.
(
,3)∪(3,4)12.
13. 2 14. 9
15. 1
16.解:(Ⅰ)由已知得:
,
……………………… (3分)
又
是△ABC的内角,所以
. ………………………………… (6分)
(2)由正弦定理:
,
………………9分
又因为
,
,又
是△ABC的内角,所以
.………………12分
17.解:(I)由
,得
.??????????????4分
(II)
.????????????????7分
由
,得
,又
,所以
,??????????11分
即
的取值范围是
.????????????????????????12分
18. 解:
(1)
.…………………………6分
(2)原式测试试题卷(07-11-17).files/image233.gif)
.……………………………………………8分
19、解:(1)
… 2分
则
的最小正周期
, ???????????????????4分
且当
时
单调递增.
即
为
的单调递增区间(写成开区间不扣分).??7分
(2)当
时
,当
,即
时
.
所以
.?????????????????11分
为
的对称轴.??????????14分
20.解:(Ⅰ)∵
,当
时,
.
∴
在[1,3]上是增函数.---------------------------------3分
∴当
时,
≤
≤
,即 -2≤
≤26.
所以当
时,
当
时,
----4分
∴存在常数M=26,使得
,都有
≤M成立.
故函数
是[1,3]上的有界函数.---------------------------6分
(Ⅱ)∵
. 由
≤1,得
≤1----------------8分
∴
------------------------10分
令
,显然
在
上单调递减,
则当t→+∞时,
→1. ∴测试试题卷(07-11-17).files/image297.gif)
令
,显然
在
上单调递减,
则当
时,
∴测试试题卷(07-11-17).files/image307.gif)
∴0≤a≤1;
故所求a的取值范围为0≤a≤1. -------------14分
21.解:(I) 由题意得 f (e) = pe--2ln e = qe- -2 ………… 1分
Þ (p-q) (e + ) = 0 ………… 2分
而 e + ≠0
∴ p = q ………… 3分
(II) 由 (I) 知 f (x) = px--2ln x
f’(x) = p + -= ………… 4分
令 h(x) = px 2-2x + p,要使 f (x) 在其定义域 (0,+¥) 内为单调函数,只需 h(x) 在 (0,+¥) 内满足:h(x)≥0 或 h(x)≤0 恒成立. ………… 5分
① 当 p = 0时, h(x) = -2x,∵ x > 0,∴ h(x) < 0,∴ f’(x) = - < 0,
∴ f (x) 在 (0,+¥) 内为单调递减,故 p = 0适合题意. ………… 6分
② 当 p > 0时,h(x) = px 2-2x + p,其图象为开口向上的抛物线,对称轴为 x = ∈(0,+¥),∴ h(x)min = p-
只需 p-≥1,即 p≥1 时 h(x)≥0,f’(x)≥0
∴ f (x) 在 (0,+¥) 内为单调递增,
故 p≥1适合题意. ………… 7分
③ 当 p < 0时,h(x) = px 2-2x + p,其图象为开口向下的抛物线,对称轴为 x = Ï (0,+¥)
只需 h(0)≤0,即 p≤0时 h(x)≤0在 (0,+¥) 恒成立.
故 p < 0适合题意. ………… 8分
综上可得,p≥1或 p≤0 ………… 9分
另解:(II) 由 (I) 知 f (x) = px--2ln x
f’(x) = p + -= p (1 + )- ………… 4分
要使 f (x) 在其定义域 (0,+¥) 内为单调函数,只需 f’(x) 在 (0,+¥) 内满足:f’(x)≥0 或 f’(x)≤0 恒成立. ………… 5分
由 f’(x)≥0 Û p (1 + )-≥0 Û p≥ Û p≥()max,x > 0
∵ ≤ = 1,且 x = 1 时等号成立,故 ()max = 1
∴ p≥1 ………… 7分
由 f’(x)≤0 Û p (1 + )-≤0 Û p≤ Û p≤()min,x > 0
而 > 0 且 x → 0 时,→ 0,故 p≤0 ………… 8分
综上可得,p≥1或 p≤0 ………… 9分
(III) ∵ g(x) = 在 [1,e] 上是减函数
∴ x = e 时,g(x)min = 2,x = 1 时,g(x)max = 2e
即 g(x) Î [2,2e] ………… 10分
① p≤0 时,由 (II) 知 f (x) 在 [1,e] 递减 Þ f (x)max = f (1) = 0 < 2,不合题意。 …11分
② 0 < p < 1 时,由x Î [1,e] Þ x-≥0
∴ f (x) = p (x-)-2ln x≤x--2ln x
右边为 f (x) 当 p = 1 时的表达式,故在 [1,e] 递增
∴ f (x)≤x--2ln x≤e--2ln e = e--2 < 2,不合题意。 ………… 12分
③ p≥1 时,由 (II) 知 f (x) 在 [1,e] 连续递增,f (1) = 0 < 2,又g(x) 在 [1,e] 上是减函数
∴ 本命题 Û f (x)max > g(x)min = 2,x Î [1,e]
Þ f (x)max = f (e) = p (e-)-2ln e > 2
Þ p > ………… 13分
综上,p 的取值范围是 (,+¥) ………… 14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com