C.函数轴的交点的横坐标由小到大依次构成一个无穷等差数列 查看更多

 

题目列表(包括答案和解析)

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为( )
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
数学公式
②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个

查看答案和解析>>

已知函数f(x)=2cos2x+2sinx cosx-1的图象与g(x)=-1的图象在y轴的右侧交点按从横坐标由小到大的顺序记为D1,D2,D3,…,则

[  ]

A.π

B.

C.

D.

查看答案和解析>>

已知函数f(x)=2cos2x+2sinxcosx-1的图象与g(x)=-1的图象在y轴的右侧交点按从横坐标由小到大的顺序记为D1,D2,D3,…,则|D5D7|=(  )

查看答案和解析>>

 

第I卷(选择题 共60分)

一、选择题(每小题5分,共60分)

1―6ADDCAB  7―12CBBCBC

第Ⅱ卷(非选择题 共90分)

二、填空题(每小题4分,共16分)

13.2  14.   15.  16.①②

三、解答题(本大题共6小题,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

             1分

      

      

              3分

18.(I)证明:由题意可知CD、CB、CE两两垂直。

       可建立如图所示的空间直角坐标系

       则       2分

       由  1分

      

       又平面BDF,

       平面BDF。       2分

   (Ⅱ)解:设异面直线CM与FD所成角的大小为

      

      

      

       即异面直线CM与FD所成角的大小为   3分

   (III)解:平面ADF,

       平面ADF的法向量为      1分

       设平面BDF的法向量为

       由

            1分

      

          1分

       由图可知二面角A―DF―B的大小为   1分

19.解:(I)设该小组中有n个女生,根据题意,得

      

       解得n=6,n=4(舍去)

       该小组中有6个女生。        6分

   (Ⅱ)由题意,甲、乙、丙3人中通过测试的人数不少于2人,

       即通过测试的人数为3人或2人。

       记甲、乙、丙通过测试分别为事件A、B、C,则

      

            6分

20.解:(I)的等差中项,

             1分

      

             2分

                1分

   (Ⅱ)

               2分

      

          3分

       ,   

       当且仅当时等号成立。

      

21.解:(I)到渐近线=0的距离为,两条准线之间的距离为1,

               3分

            1分

   (II)由题意,设

       由     1分

            3分

   (III)由双曲线和ABCD的对称性,可知A与C、B与D关于原点对称。

       而   

       1分

       点O到直线的距离   1分

              1分

             1分

22.解:(I)当t=1时,   1分

       当变化时,的变化情况如下表:

      

(-1,1)

1

(1,2)

0

+

极小值

       由上表,可知当    2分

            1分

   (Ⅱ)

      

       显然的根。    1分

       为使处取得极值,必须成立。

       即有    2分

      

       的个数是2。

   (III)当时,若恒成立,

       即   1分

      

       ①当时,

      

       上单调递增。

      

      

       解得    1分

       ②当时,令

       得(负值舍去)。

   (i)若时,

       上单调递减。

      

      

           1分

   (ii)若

       时,

       当

       上单调递增,

      

       要使,则

      

            2分

   (注:可证上恒为负数。)

       综上所述,t的取值范围是。        1分