1.用钢笔或圆珠笔直接答在试题卷中. 查看更多

 

题目列表(包括答案和解析)

某学校举办“有奖答题”活动,每位选手最多答10道题,每道题对应1份奖品,每份奖品价值相同.若选手答对一道题,则得到该题对应的奖品.答对一道题之后可选择放弃答题或继续答题,若选择放弃答题,则得到前面答对题目所累积的奖品;若选择继续答题,一旦答错,则前面答对题目所累积的奖品将全部送给现场观众,结束答题.假设某选手答对每道题的概率均为
23
,且各题之间答对与否互不影响.已知该选手已经答对前6道题.
(Ⅰ)如果该选手选择继续答题,并在最后4道题中,在每道题答对后都选择继续答题.
(ⅰ)求该选手第8题答错的概率;
(ⅱ)记该选手所获得的奖品份数为ξ,写出随机变量ξ的所有可能取值并求ξ的数学期望Eξ;
(Ⅱ)如果你是该选手,你是选择继续答题还是放弃答题?若继续答题你将答到第几题?请用概率或统计的知识给出一个合理的解释.

查看答案和解析>>

某学校举办“有奖答题”活动,每位选手最多答10道题,每道题对应1份奖品,每份奖品价值相同.若选手答对一道题,则得到该题对应的奖品.答对一道题之后可选择放弃答题或继续答题,若选择放弃答题,则得到前面答对题目所累积的奖品;若选择继续答题,一旦答错,则前面答对题目所累积的奖品将全部送给现场观众,结束答题.假设某选手答对每道题的概率均为,且各题之间答对与否互不影响.已知该选手已经答对前6道题.
(Ⅰ)如果该选手选择继续答题,并在最后4道题中,在每道题答对后都选择继续答题.
(ⅰ)求该选手第8题答错的概率;
(ⅱ)记该选手所获得的奖品份数为ξ,写出随机变量ξ的所有可能取值并求ξ的数学期望Eξ;
(Ⅱ)如果你是该选手,你是选择继续答题还是放弃答题?若继续答题你将答到第几题?请用概率或统计的知识给出一个合理的解释.

查看答案和解析>>

答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、班级和考号填写在答题卷上。

查看答案和解析>>

小华到某文具店想买2支钢笔或3支圆珠笔,现知6支钢笔和3支圆珠笔的价格之和大于24元,而4支钢笔和5支圆珠笔的价格之和小于22元,若设2支钢笔的价格为元,3支圆珠笔的价格为元,则         (    )

    A.            B.             C.            D.不确定

 

查看答案和解析>>

必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。

第Ⅰ卷   选择题(共50分)

一、选择题(本大题共10小题,每小题5分,满分50分)

1、设全集U={是不大于9的正整数},{1,2,3 },{3,4,5,6}则图中阴影部分所表示的集合为(  )

       A.{1,2,3,4,5,6}    B. {7,8,9}

       C.{7,8}                        D.    {1,2,4,5,6,7,8,9}

2、计算复数(1-i)2等于(  )

A.0                B.2              C. 4i                   D. -4i

查看答案和解析>>

 

第I卷(选择题 共60分)

一、选择题(每小题5分,共60分)

1―6ADDCAB  7―12CBBCBC

第Ⅱ卷(非选择题 共90分)

二、填空题(每小题4分,共16分)

13.2  14.   15.  16.①②

三、解答题(本大题共6小题,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

             1分

      

      

              3分

18.(I)证明:由题意可知CD、CB、CE两两垂直。

       可建立如图所示的空间直角坐标系

       则       2分

       由  1分

      

       又平面BDF,

       平面BDF。       2分

   (Ⅱ)解:设异面直线CM与FD所成角的大小为

      

      

      

       即异面直线CM与FD所成角的大小为   3分

   (III)解:平面ADF,

       平面ADF的法向量为      1分

       设平面BDF的法向量为

       由

            1分

      

          1分

       由图可知二面角A―DF―B的大小为   1分

19.解:(I)设该小组中有n个女生,根据题意,得

      

       解得n=6,n=4(舍去)

       该小组中有6个女生。        6分

   (Ⅱ)由题意,甲、乙、丙3人中通过测试的人数不少于2人,

       即通过测试的人数为3人或2人。

       记甲、乙、丙通过测试分别为事件A、B、C,则

      

            6分

20.解:(I)的等差中项,

             1分

      

             2分

                1分

   (Ⅱ)

               2分

      

          3分

       ,   

       当且仅当时等号成立。

      

21.解:(I)到渐近线=0的距离为,两条准线之间的距离为1,

               3分

            1分

   (II)由题意,设

       由     1分

            3分

   (III)由双曲线和ABCD的对称性,可知A与C、B与D关于原点对称。

       而   

       1分

       点O到直线的距离   1分

              1分

             1分

22.解:(I)当t=1时,   1分

       当变化时,的变化情况如下表:

      

(-1,1)

1

(1,2)

0

+

极小值

       由上表,可知当    2分

            1分

   (Ⅱ)

      

       显然的根。    1分

       为使处取得极值,必须成立。

       即有    2分

      

       的个数是2。

   (III)当时,若恒成立,

       即   1分

      

       ①当时,

      

       上单调递增。

      

      

       解得    1分

       ②当时,令

       得(负值舍去)。

   (i)若时,

       上单调递减。

      

      

           1分

   (ii)若

       时,

       当

       上单调递增,

      

       要使,则

      

            2分

   (注:可证上恒为负数。)

       综上所述,t的取值范围是。        1分