当时..在为凸函数 查看更多

 

题目列表(包括答案和解析)

设函数y=f(x)在(a,b)上的导函数为f'(x),f'(x)在(a,b)上的导函数为f''(x),若在(a,b)上,f''(x)<0恒成立,则称函数f(x)在(a,b)上为“凸函数”.已知f(x)=
1
12
x4-
1
6
mx3-
3
2
x2

(Ⅰ)若f(x)为区间(-1,3)上的“凸函数”,则实数m=
 

(Ⅱ)若当实数m满足|m|≤2时,函数f(x)在(a,b)上总为“凸函数”,则b-a的最大值为
 

查看答案和解析>>

设函数y=f(x)在(a,b)上的导函数为f′(x),f′(x)在(a,b)上的导函数为f″(x),若在a,b)上,f″(x)<0恒成立,则称函数函数f(x)在(a,b)上为“凸函数”.已知当m≤2时,f(x)=
1
6
x3-
1
2
mx2+x
在(-1,2)上是“凸函数”.则f(x)在(-1,2)上(  )
A、既有极大值,也有极小值
B、既有极大值,也有最小值
C、有极大值,没有极小值
D、没有极大值,也没有极小值

查看答案和解析>>

设函数y=f(x)在(a,b)上的导函数为f′(x),f′(x)在(a,b)上的导函数为f″(x),若在(a,b)上,f″(x)<0恒成立,则称函数f(x)在(a,b)上为“凸函数”.已知f(x)=
1
12
x4-
1
6
mx3-
3
2
x2

(Ⅰ)若f(x)为区间(-1,3)上的“凸函数”,试确定实数m的值;
(Ⅱ)若当实数m满足|m|≤2时,函数f(x)在(a,b)上总为“凸函数”,求b-a的最大值.

查看答案和解析>>

设函数在区间()的导函数在区间()的导函数,若在区间()上恒成立,则称函数在区间()为凸函数,已知若当实数满足时,函数上为凸函数,则最大值是_________.

查看答案和解析>>

设函数上的导函数为上的导函数为,若在上,恒成立,则称函数上为“凸函数”.已知当时,上是“凸函数”,则上(     )

A.既没有最大值,也没有最小值   B.既有最大值,也有最小值

C.有最大值,没有最小值         D.没有最大值,有最小值

 

查看答案和解析>>


同步练习册答案