由于m为整数,,故m最大为6-----------------14分 查看更多

 

题目列表(包括答案和解析)

(2012•门头沟区一模)给出定义:若m-
1
2
≤x<m+
1
2
(其中m为整数),则m叫离实数x最近的整数,记作[x]=m,已知f(x)=|[x]-x|,下列四个命题:
①函数f(x)的定义域为R,值域为[0,
1
2
]
; ②函数f(x)是R上的增函数;
③函数f(x)是周期函数,最小正周期为1;  ④函数f(x)是偶函数,
其中正确的命题的个数是(  )

查看答案和解析>>

已知以4为周期的函数f(x)=
m
1-x2
,x∈(-1,1]
1-|x-2|,x∈(1,3]
,其中m为整数,若方程3f(x)-x=0恰好有5个解,则m=
2
2

查看答案和解析>>

(2008•盐城一模)给出定义:若m-
1
2
<x≤m+
1
2
(其中m为整数),则m叫做离实数x最近的整数,记作{x},即 {x}=m.在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题:
(1)y=f(x)的定义域是R,值域是[0,
1
2
]
(2)y=f(x)是周期函数,最小正周期是1
(3)y=f(x)的图象关于直线x=
k
2
(k∈Z)对称
(4)y=f(x)在[-
1
2
1
2
]
上是增函数   
则其中真命题是
(1)、(2)、(3)
(1)、(2)、(3)

查看答案和解析>>

某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后画出如下频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)估计这次考试的众数m与中位数n(结果保留一位小数);
(Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分.

查看答案和解析>>

为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有1000名学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成的频率分布表和频数分布条形图,解答下列问题:
频率分布表
分组 频数 频率
50.5-60.5 4 0.08
60.5-70.5 M 0.16
70.5-80.5 10 0.20
80.5-90.5 16  
90.5-100.5   n
合计   1
(1)求频率分布表中的m,n值,并补全频数条形图;
(2)根据频数条形图估计该样本的中位数是多少?
(3)若成绩在65.5~85.5分的学生为三等奖,问该校获得三等奖的学生约为多少人.

查看答案和解析>>


同步练习册答案