[解答]:(I)连结AC.则AC⊥BD.∵PA⊥平面ABCD.AC是斜线PC在平面ABCD上的射影.∴由三垂线定理得PC⊥BD. (II)取PC的中点K.连结FK.EK. 则四边形AEKF是平行四边形. 查看更多

 

题目列表(包括答案和解析)

【解析】Ti关系如下图:

T

1

i

2

3

4

5

6

【答案】

查看答案和解析>>

受轿车在保修期内维修费等因素的影响,企业产生每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中随机抽取50辆,统计书数据如下:

将频率视为概率,解答下列问题:

(I)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;

(II)若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列;

(III)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由

【解析】

(2)

1

2

3

1.8

2.9

P

P

(3)由(2)得

 

查看答案和解析>>

过抛物线的对称轴上的定点,作直线与抛物线相交于两点.

(I)试证明两点的纵坐标之积为定值;

(II)若点是定直线上的任一点,试探索三条直线的斜率之间的关系,并给出证明.

【解析】本题主要考查抛物线与直线的位置关系以及发现问题和解决问题的能力.

(1)中证明:设下证之:设直线AB的方程为: x=ty+m与y2=2px联立得消去x得y2=2pty-2pm=0,由韦达定理得 

 (2)中:因为三条直线AN,MN,BN的斜率成等差数列,下证之

设点N(-m,n),则直线AN的斜率KAN=,直线BN的斜率KBN=

  

KAN+KBN=+

本题主要考查抛物线与直线的位置关系以及发现问题和解决问题的能力.

 

查看答案和解析>>

已知点列满足:,其中,又已知

(I)若,求的表达式;

(II)已知点B,记,且成立,试求a的取值范围;

(III)设(2)中的数列的前n项和为,试求: 。

【解析】第一问利用∵,∴,∴,∴

第二问∵,∴.

∴要使成立,只要,即为所求

第三问∵

         ,∴ 

,∴,∴ 

 

查看答案和解析>>

(本小题满分12分)

有编号为,,…的10个零件,测量其直径(单位:cm),得到下面数据:


其中直径在区间[1.48,1.52]内的零件为一等品。

(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;

(Ⅱ)从一等品零件中,随机抽取2个.

     (ⅰ)用零件的编号列出所有可能的抽取结果;

     (ⅱ)求这2个零件直径相等的概率。本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力。满分12分

【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==.

      (Ⅱ)(i)解:一等品零件的编号为.从这6个一等品零件中随机抽取2个,所有可能的结果有:,,,

,,,共有15种.

      (ii)解:“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:,共有6种.

      所以P(B)=.

(本小题满分12分)

如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求异面直线CE与AF所成角的余弦值;      

(Ⅱ)证明CD⊥平面ABF;

查看答案和解析>>


同步练习册答案