因此.原不等式的解集为 ---------9分 查看更多

 

题目列表(包括答案和解析)

解关于的不等式

【解析】本试题主要考查了含有参数的二次不等式的求解,

首先对于二次项系数a的情况分为三种情况来讨论,

A=0,a>0,a<0,然后结合二次函数的根的情况和图像与x轴的位置关系,得到不等式的解集。

解:①若a=0,则原不等式变为-2x+2<0即x>1

此时原不等式解集为;   

②若a>0,则ⅰ)时,原不等式的解集为

ⅱ)时,原不等式的解集为

  ⅲ)时,原不等式的解集为。 

③若a<0,则原不等式变为

    原不等式的解集为

 

查看答案和解析>>

①命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”;
②若P且Q为假命题,则P、Q均为假命题;
③在△ABC中,sinA>sinB的充要条件是A>B;
④不等式的解集为|x|+|x-1|>a的解集为R,则a≤1;
⑤点(x,y)在映射f作用下的象是(2xlo
g
y
1
2
),则在f的作用下,点(1,-1)的原象是(0,2).
其中真命题的是
 
(写出所有真命题的编号)

查看答案和解析>>

已知条件p:|x-1|>a(a≥0)和条件q:lg(x2-3x+3)>0,
(1)求满足条件p,q的不等式的解集.
(2)分别利用所给的两个条件作为A,B构造命题:“若A,则B”,问是否存在非负实数a使得构造的原命题为真命题,而其逆命题为假命题,若存在,求出a的取值范围.若不存在,请说明理由.

查看答案和解析>>

“解方程(”有如下思路;设,则在R上单调递减,且,故原方程有唯一解x=2,类比上述解题思路,不等式的解集是         .

 

查看答案和解析>>

  已知  设P:函数在R上单调递减;  Q:不等式的解集为R,若“PQ”是真命题,“PQ”是假命题,求的取值范围.

[解题思路]:“PQ”是真命题,“PQ”是假命题,根据真假表知,PQ之中一真一假,因此有两种情况,要分类讨论.

查看答案和解析>>


同步练习册答案