题目列表(包括答案和解析)
(13分,文科做)设二次函数
满足下列条件:
①当
∈R时,
的最小值为0,且f (
-1)=f(-
-1)成立;
②当
∈(0,5)时,
≤
≤2
+1恒成立。
(1)求
的值;
(2)求
的解析式;
(3)求最大的实数m(m>1),使得存在实数t,只要当
∈
时,就有
成立。
(本小题满分13分)
已知定义在R上的函数
(a,b,c,d为实常数)的图象关于原点对称,且当x=1时f(x)取得极值
.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)证明:对任意
∈[-1,1],不等式
成立;
(Ⅲ)若函数
在区间(1,∞)内无零点,求实数m的取值范围.
(本题满分13分)已知
是定义在
上的奇函数,当
时,![]()
(1)求
的解析式;
(2)是否存在负实数
,使得当
的最小值是4?如果存在,求出
的值;如果不存在,请说明理由。
(3)对
如果函数
的图像在函数
的图像的下方,则称函数
在D上被函数
覆盖。求证:若
时,函数
在区间
上被函数
覆盖。
(本题满分13分)已知
是定义在
上的奇函数,当
时,![]()
(1)求
的解析式;
(2)是否存在负实数
,使得当
的最小值是4?如果存在,求出
的值;如果不存在,请说明理由。
(3)对
如果函数
的图像在函数
的图像的下方,则称函数
在D上被函数
覆盖。求证:若
时,函数
在区间
上被函数
覆盖。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com