19. 如图.已知长方体ABCD―A1B1C1D1.AB=2.AA1=1.直线BD与平面AA1B1B所成的角为30°.英才苑AE⊥BD于E.F为A1B1的中点. (1)求异面直线AE与BF所成的角, (2)求平面BDF与平面AA1B1B所成的二面角的大小, 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线L在y轴上的截距为m(m≠0),L交椭圆于A、B两个不同点。

(1)求椭圆的方程;

(2)求m的取值范围;

(3)求证直线MA、MB与x轴始终围成一个等腰三角形。

查看答案和解析>>

(本小题满分13分)

  如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的

  左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭

  圆的焦点,设为该双曲线上异于顶点的任一点,直线与椭圆的交点

  分别 为

   (Ⅰ)求椭圆和双曲线的标准方程; 

   (Ⅱ)设直线的斜率分别为,证明

   (Ⅲ)是否存在常数,使得恒成立?

      若存在,求的值;若不存在,请说明理由.

                                                             

查看答案和解析>>

(本小题满分13分)
如图,已知四棱柱ABCD—A1B1C1D1中,A1D⊥底面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2。
(I)求证:C1D//平面ABB1A1
(II)求直线BD1与平面A1C1D所成角的正弦值;
(Ⅲ)求二面角D—A1C1—A的余弦值。

查看答案和解析>>

(本小题满分13分)
如图,已知正三棱柱的底面正三角形的边长是2,D是的中点,直线与侧面所成的角是.

⑴求二面角的大小;
⑵求点到平面的距离.

查看答案和解析>>

(本小题满分13分)
如图,已知菱形的边长为,.将菱形沿对角线折起,使,得到三棱锥.

(Ⅰ)若点是棱的中点,求证:平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)设点是线段上一个动点,试确定点的位置,使得,并证明你的结论.

查看答案和解析>>

一、选择题(每小题5分,共50分)

1―5:ABCDC    6―10:BAAAD   

二、填空题(每小题4分,共24分)

11.;12.99;13.207;14.0;15.2;

16.[1,2]或填[3,4]或填它们的任一子区间(答案有无数个)。

三、解答题(共76分)

17.(1)解:由

      有………………2分

      由,……………3分

      由余弦定理……5分

      当…………7分

   (2)由

      则,……………………9分

      由

      ……………………13分

18.(本小题满分13分)

解:(1)①只安排2位接线员,则2路及2路以下电话同时打入均能接通,其概率

     

      故所求概率;……………………4分

      ②“损害度” ………………8分

   (2)∵在一天的这一时间内同时电话打入数ξ的数学期望为

      0×0.13+1×0.35+2×0.27+3×0.14+4×0.85+5×0.02+6×0.01=1.79

      ∴一周五个工作日的这一时间电话打入数ξ的数学期望等于5×1.79=8.95.……13分

19.(1)连结B1D1,过F作B1D1的垂线,垂足为K.

      ∵BB1与两底面ABCD,A1B1C1D1都垂直.

      FK⊥BB1

      ∴FK⊥B1D1             FK⊥平面BDD1B1

      B1D1∩BB1=B1

      又AE⊥BB1

      又AE⊥BD    AE⊥平面BDD1B1            因此KF∥AE.

      BB1∩BD=B

      ∴∠BFK为异面直线BF与AE所成的角,连结BK,由FK⊥面BDD1B1得FK⊥BK,

      从而△BKF为Rt△.

      在Rt△B1KF和Rt△B1D1A1中,由得:

     

      又BF=.   

      ∴异面直线BF与AE所成的角为arccos.……………………4分

   (2)由于DA⊥平面AA1B由A作BF的垂线AG,垂足为G,连结DG,由三垂线定理

        知BG⊥DG.

      ∴∠AGD即为平面BDF与平面AA1B所成二面角的平面角. 且∠DAG=90°

      在平面AA1B1B中,延长BF与AA1交于点S.

      ∴A1、F分别是SA、SB的中点.   即SA=2A1A=2=AB.

      ∴Rt△BAS为等腰直角三角形,垂足G点实为斜边SB的中点F,即F、G重合.

      易得AG=AF=SB=,在Rt△BAS中,AD=

      ∴tan∠AGD=

      即平面BDF与平面AA1B1B所成二面角(锐角)的大小为arctan .…………9分

   (3)由(2)知平面AFD是平面BDF与平面AA1B1B所成二面角的平面角所在的平面.

      ∴面AFD⊥面BDF.

      在Rt△ADF中,由A作AH⊥DF于H,则AH即为点A到平面BDF的距离.

      由AH?DF=AD?AF,得

      所以点A到平面BDF的距离为……………………13分

20.解:(1)∵点都在斜率为6的同一条直线上,

     

      于是数列是等差数列,故……………………3分

      共线,

     

      当n=1时,上式也成立.

      所以………………8分

   (2)把代入上式,

      得

     

      ∴当n=4时,取最小值,最小值为………………13分

21.解:

      ,

      ……………………3分

   (1)的两个实根,

      ∵方程有解,………………7分

   (2)由

     

      ……………………12分

      法二:

22.(1)设点T的坐标为,点M的坐标为,则M1的坐标为(0,),

      ,于是点N的坐标为,N1的坐标

      为,所以

      由

      由此得

      由

      即所求的方程表示的曲线C是椭圆. ……………………3分

   (2)点A(5,0)在曲线C即椭圆的外部,当直线l的斜率不存在时,直线l与椭圆C

      无交点,所以直线l斜率存在,并设为k. 直线l的方程为

      由方程组

      依题意

      当时,设交点PQ的中点为

      则

     

      又

     

      而不可能成立,所以不存在直线l,使得|BP|=|BQ|.…………7分

   (3)由题意有,则有方程组

        由(1)得  (5)

      将(2),(5)代入(3)有

      整理并将(4)代入得

      易知

      因为B(1,0),S,故,所以

     

      …………12分