(I)求的概率, 查看更多

 

题目列表(包括答案和解析)




(I)若成绩大于或等于60且小于80,
认为合格,求该班在这次综合测试中
成绩合格的人数;
(II)测试成绩在内的
学生共有多少人?从这几名同学中随机抽取两名同学,设其测试成绩分别为,求事件“”的概率

查看答案和解析>>

 

内的概率为.

(i)当点C在圆周上运动时,求的最大值;

(ii)记平面与平面所成的角为,当取最大值时,

的值。

查看答案和解析>>

设随机变量ξ的概率分布为P(ξ=i)=(i=1,2,3,4),其中m为常数.

求(1)P(ξ=1或ξ=2);

(2)P(<ξ<).

查看答案和解析>>

题干

概率为

(i)当点C在圆周上运动时,求的最大值;

(ii)记平面与平面所成的角为,当取最大值时,求的值。

查看答案和解析>>

零件直径相等的概率。本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力。满分12分

【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==.

      (Ⅱ)(i)解:一等品零件的编号为.从这6个一等品零件中随机抽取2个,所有可能的结果有:,,,

,,,共有15种.

      (ii)解:“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:,共有6种.

      所以P(B)=.

(本小题满分12分)

如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求异面直线CE与AF所成角的余弦值;      

(Ⅱ)证明CD⊥平面ABF;

(Ⅲ)求二面角B-EF-A的正切值。

查看答案和解析>>

一、选择题

1.D  2.B  3.B  4.B  5.A  6.B  7.C  8.B  9.C  10.A  11.B  12.D

2,4,6

2,4,6

三、解答题

17.(本小题满分12分)

       解证:(I)

       由余弦定理得              …………4分

       又                                               …………6分

     (II)

                                          …………10分

                                                          

       即函数的值域是                                                          …………12分

18.(本小题满分12分)

       解:(I)依题意

                                                            …………2分

      

                                                                    …………4分

                                                                        …………5分

(II)                   …………6分

                                                         …………7分

              …………9分

                                       …………12分

19.(本小题满分12分)

     (I)证明:依题意知:

                                      …………2分

     …4分

   (II)由(I)知平面ABCD

       ∴平面PAB⊥平面ABCD.                        …………4分

     在PB上取一点M,作MNAB,则MN⊥平面ABCD

       设MN=h

       则

                            …………6分

       要使

       即MPB的中点.                                                                  …………8分

       建立如图所示的空间直角坐标系

       则A(0,0,0),B(0,2,0),

       C(1,1,0),D(1,0,0),

       P(0,0,1),M(0,1,

       由(I)知平面,则

       的法向量。                   …………10分

       又为等腰

      

       因为

       所以AM与平面PCD不平行.                                                  …………12分

20.(本小题满分12分)

       解:(I)已知

       只须后四位数字中出现2个0和2个1.

                                             …………4分

   (II)的取值可以是1,2,3,4,5,.

      

                                                              …………8分

       的分布列是

   

1

2

3

4

5

P

                                                                                                      …………10分

                 …………12分

   (另解:记

       .)

21.(本小题满分12分)

       解:(I)设M

        由

       于是,分别过AB两点的切线方程为

         ①

         ②                           …………2分

       解①②得    ③                                                 …………4分

       设直线l的方程为

       由

         ④                                               …………6分

       ④代入③得

       即M

       故M的轨迹方程是                                                      …………7分

   (II)

      

                                                                                 …………9分

   (III)

       的面积S最小,最小值是4                      …………11分

       此时,直线l的方程为y=1                                                      …………12分

22.(本小题满分14分)

       解:(I)                           …………2分

       由                                                           …………4分

      

       当的单调增区间是,单调减区间是

                                                                                     …………6分

       当的单调增区间是,单调减区间是

                                                                                      …………8分

   (II)当上单调递增,因此

      

                                                                                                      …………10分

       上单调递减,

       所以值域是                           …………12分

       因为在

                                                                                                      …………13分

       所以,a只须满足

       解得

       即当使得成立.

                                                                                                      …………14分