(Ⅱ)过定点作直线交轨迹C于A.B两点.E是D点关于坐标原点O的对称点.求证:, 查看更多

 

题目列表(包括答案和解析)

动圆C过定点(1,0),且与直线x=-1相切.设圆心C的轨迹Γ方程为F(x,y)=0
(1)求F(x,y)=0;
(2)曲线Γ上一定点P(1,2),方向向量的直线l(不过P点)与曲线Γ交与A、B两点,设直线PA、PB斜率分别为kPA,kPB,计算kPA+kPB
(3)曲线Γ上的一个定点P(x,y),过点P作倾斜角互补的两条直线PM,PN分别与曲线Γ交于M,N两点,求证直线MN的斜率为定值.

查看答案和解析>>

动圆C过定点F(
p
2
,0)
,且与直线x=-
p
2
相切,其中p>0.设圆心C的轨迹Γ的程为F(x,y)=0
(1)求F(x,y)=0;
(2)曲线Γ上的一定点P(x0,y0)(y0≠0),方向向量
d
=(y0,-p)
的直线l(不过P点)与曲线Γ交与A、B两点,设直线PA、PB斜率分别为kPA,kPB,计算kPA+kPB
(3)曲线Γ上的两个定点P0(x0,y0)、Q0(x0y0),分别过点P0,Q0作倾斜角互补的两条直线P0M,Q0N分别与曲线Γ交于M,N两点,求证直线MN的斜率为定值.

查看答案和解析>>

动圆C过定点(1,0),且与直线x=-1相切.设圆心C的轨迹Γ方程为F(x,y)=0
(1)求F(x,y)=0;
(2)曲线Γ上一定点P(1,2),方向向量
d
=(1,-1)
的直线l(不过P点)与曲线Γ交与A、B两点,设直线PA、PB斜率分别为kPA,kPB,计算kPA+kPB
(3)曲线Γ上的一个定点P0(x0,y0),过点P0作倾斜角互补的两条直线P0M,P0N分别与曲线Γ交于M,N两点,求证直线MN的斜率为定值.

查看答案和解析>>

动圆C过定点F,且与直线相切,其中p>0.设圆心C的轨迹Γ的程为F(x,y)=0
(1)求F(x,y)=0;
(2)曲线Γ上的一定点P(x,y)(y≠0),方向向量的直线l(不过P点)与曲线Γ交与A、B两点,设直线PA、PB斜率分别为kPA,kPB,计算kPA+kPB
(3)曲线Γ上的两个定点P(x,y)、,分别过点P,Q作倾斜角互补的两条直线PM,QN分别与曲线Γ交于M,N两点,求证直线MN的斜率为定值.

查看答案和解析>>

已知动圆过定点(
p
2
,0)
,且与直线l:x=-
p
2
相切,其中p>0.
(Ⅰ)求动圆圆心C的轨迹方程;
(Ⅱ)设A(x0,y0)为轨迹C上一定点,经过A作直线AB、AC 分别交抛物线于B、C 两点,若 AB 和AC 的斜率之积为常数c.求证:直线 BC 经过一定点,并求出该定点的坐标.

查看答案和解析>>

CACD CCBA

9、      10、2:1      11、    12、      13、4

14、a<-1   15、

 

16、17、解:(I)依题意

                                                            …………2分

      

                                                                    …………4分

         bn=8+8×(n-1)=8n                                   …………5分

(II)                   …………6分

                

 

                                                    …………12分

18、(1)3

(2)底面边长为2,高为4是,体积最大,最大体积为16

19、

略解、(1)因为f′(x)=3ax2+2x-1,依题意存在(2,+∞)的非空子区间使3ax2+2x-1>0成立,即 在x∈(2,+∞)某子区间上恒成立,令h(x)=,求得h(x)的最小值为,故

(2)由已知a>0

令f′(x)=3ax2+2x-1>0

故f(x)在区间()上是减函数, 即f(x)在区间()上恒大于零。故当a>0时,函数在f(x)在区间()上不存在零点

20、(1)f(1)=3………………………………………………………………………………(1分)

        f(2)=6………………………………………………………………………………(2分)

        当x=1时,y=2n,可取格点2n个;当x=2时,y=n,可取格点n个

        ∴f(n)=3n…………………………………………………………………………(4分)

  

   (2)………………………………………………(9分)

       

        ∴T1<T2=T3>T4>…>Tn

        故Tn的最大值是T2=T3=

        ∴m≥………………………………………………………………()

 

 

21、解:(Ⅰ)设,

,      …………………2分

                   …………………3分

.                 ………………………………………………4分

∴动点M的轨迹C是以O(0,0)为顶点,以(1,0)为焦点的抛物线(除去原点).

             …………………………………………5分

(Ⅱ)解法一:(1)当直线垂直于轴时,根据抛物线的对称性,有

                                                         ……………6分

(2)当直线轴不垂直时,依题意,可设直线的方程为,则AB两点的坐标满足方程组

消去并整理,得

,

.   ……………7分

设直线AEBE的斜率分别为,则:

.  …………………9分

,

,

.

综合(1)、(2)可知.                  …………………10分

解法二:依题意,设直线的方程为,则AB两点的坐标满足方程组:

消去并整理,得

,

. ……………7分

设直线AEBE的斜率分别为,则:

.  …………………9分

,

,

.        ……………………………………………………10分

(Ⅲ)假设存在满足条件的直线,其方程为AD的中点为AD为直径的圆相交于点FGFG的中点为H,则点的坐标为.

,

,

 .                  …………………………12分

,

,得

此时,.

∴当,即时,(定值).

∴当时,满足条件的直线存在,其方程为;当时,满足条件的直线不存在.    

 

 

 


同步练习册答案