2.课前热身
(1)(师手拿一支大三角形)请同学们也拿也一支与我一样的三角板,这两个三角板的三个内角有何关系?它们全等吗?这说明了什么?
(2)如果已知两个三角形有两边和一角对应相等,应分几种情形讨论?
3.如图,点D是等腰直角三角形ABC内一点,AB=AC,将△ABD绕点A逆时针旋转90°,点D与点E重合,则△ABD≌_________, AD=_________, BD=_________.
![]()
2.如图,AE是平行四边形ABCD的高,将△ABE沿AD方向平移,使点A与点D重合,点E与点F重合,则△ABE≌_________, ∠F=_________°.
1.如图,点O是平行四边形ABCD的对角线的交点,△AOB绕O旋转180º,可以与△___________重合,这说明△AOB≌△___________.这两个三角形的对应边是AO与__________,OB与__________,BA与__________;对应角是∠AOB与________,∠OBA与_________,∠BAO与___________.
![]()
2.如果两个三角形有两组对应相等的元素(边或角),那么这两个三角形一定全等吗?想一想,会有几种可能的情况?分别按照下面的条件,用刻度尺或量角器画三角形,并和周围的同学比较一下,所画的图形是否全等.
(1) 三角形的两个内角分别为30°和70°;
(2) 三角形的两条边分别为3cm和5cm;
(3) 三角形的一个内角为60°,一条边为3cm;
(i) 这条长3cm的边是60°角的邻边;
(ii) 这条长3cm的边是60°角的对边.
你一定会发现,如果只知道两个三角形有一组或两组对应相等的元素(边或角),那么这两个三角形不一定全等(甚至形状都不相同).
思 考
如果两个三角形有三组对应相等的元素(边或角),那么会有哪几种可能的情况?这时,这两个三角形一定会全等吗?
练习
1.我们从最简单的开始,如果只知道两个三角形有一组对应相等的元素(边或角),这两个三角形一定全等吗?
(1) 如果只知道两个三角形有一个角对应相等,那么这两个三角形全等吗?
(2) 如果只知道两个三角形有一条边对应相等,那么这两个三角形全等吗?
1.复习导入
我们知道: 若两个三角形的三条边、三个角分别对应相等,则这两个三角形全等.那么能否减少一些条件,找到更为简便的判定三角形全等的方法?
显然由于三角形的内角和等于180°,如果两个角分别对应相等,那么另一个角必然也相等.这样,若两个三角形的三条边、两个角分别对应相等,则这两个三角形仍然全等.
能否再减少一些条件?对两个三角形来说,六个元素(三条边、三个角)中至少要有几个元素分别对应相等,两个三角形才会全等呢?
通过画图的方式探索两个三角形全等的识别方法之(SAS),弄清“已知三个角”和“已知两边和其中一边的对角”的不可识别的原因.
4. 连结BC.
△ABC即为所求.
如图19.2.17,在Rt△ABC和Rt△A′B′C′中,已知∠ACB=∠A′C′B′=90°, AB=A′B′, AC=A′C′.
由于直角边AC=A′C′,我们移动其中的Rt△ABC,使点A与点A′、点C与点C′重合,且使点B与点B′分别位于线段A′C′的两侧.因为∠ACB=∠A′C′B=∠A′C′B′=90°,故∠B′C′B=∠A′C′B′+∠A′C′B=180°,因此点B、C′、B′在同一条直线上.于是在△A′B′B中,由AB=A′B=A′B′(已知),得∠B=∠B′.由“角角边”,便可知这两个三角形全等.于是可得
如果两个直角三角形的斜边和一条直角边分别对应相等,那么这两个直角三角形全等.简记为H.L.(或斜边直角边).
例4如图19.2.18,已知AC=BD, ∠C=∠D=90°,求证Rt△ABC≌Rt△BAD.
证明∵ ∠C=∠D=90°,
∴ △ABC与△BAD都是直角三角形.
在Rt△ABC与Rt△BAD中,
∵ AB=BA,
AC=BD,
∴ Rt△ABC≌Rt△BAD(H.L.).
3. 以点B为圆心,以5cm长为半径画圆弧,交射线AM于点C;
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com