1. 理解“包含两步,并且每一步的结果为有限多个情形”的意义。
25.2 用列举法求概率(第二课时)
教学目标:
1、教材
综合运用
拓广探索![]()
教学反思
本节课应用列举法求概率。
教材
练习
,
,
练习
2.一次试验中,各种结果发生的可能性相等.
对于具有上述特点的试验,我们可以从事件所包含的各种可能的结果在全部可能
的试验结果中所占的比分析出事件的概率.
因此,一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相
等,事件A包含其中的、种结果,那么李件A发生的概率为P(A)= ![]()
例1.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下
列事件的概率.
(1)牌上的数字为3;
(2)牌上的数字为奇数;
(3)牌上的数字为大于3且小于6.
分析:因为从6张牌子任抽取一张符合刚才总结的试验的两个特点,所以可用P(A)=
来求解.
解:任抽取一张牌子,其出现数字可能为1,2,3,4,5,6,共6种,这些数字出现的可
能性相同.
(1)P(点数为3)=1/6;
(2)P(点数为奇数)=3/6=1/2;
(3)牌上的数字为大于3且小于6的有4,5两种.
所以 P(点数大于3且小于6)=1/3
例2:如图25-7所示,有一个转盘,转盘分成4个相同的扇形,颇色分为红、绿、黄三种颇色,指针的位置固定,转动转盘后任其自由停止.其中的某个扇形会恰好停在指
针所指的位里(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率
(1)指针指向绿色;
(2)指针指向红色或黄色
(3)指针不指向红色.
![]()
分析:转一次转盘,它的可能结果有4种-有限个,并且各种结果发生的可能性相等.因此,它可以应用“ P(A)=
”问题,即“列举法”求概率.
解,(1) P(指针,向绿色)=1/4;
(2) P(指针指向红色或黄色)=3/4;
(3)P(指针不指向红色)=1/2
例3如图25-8所示是计算机中“扫雷“游戏的画面,在
个小方格的正方形雷区中,随机埋藏着
颗地雷,每个小方格内最多只能藏
颗地雷。
小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号
的方格相邻的方格记为
区域(画线部分),
区域外的部分记为
区域,数字
表示在
区域中有
颗地雷,那么第二步应该踩
区域还是
区域?
分析:第二步应该踩在遇到地雷小的概率,所以现在关键求出在
区域、
区域的概率并比较。
解:(1)
区域的方格共有
个,标号
表示在这
个方格中有
个方格各藏
颗地雷,因此,踩
区域的任一方格,遇到地雷的概率是
。
(2)
区域中共有
个小方格,其中有
个方格内各藏
颗地雷。因此,踩
区域的任一方格,遇到地雷的概率是
。
由于
,所以踩
区域遇到地雷的可能性大于踩
区域遇到地雷的可能性,因而第二步应踩
区域。
1.一次试验中,可能出现的结果有限多个.
2.有1,2,3,4,5,6等6种可能.由于股子的构造相同质地均匀,又是随机掷出的,
所以我们可以断言:每个结果的可能性相等,都是1/6,所以所求概率是1/6所求。
以上两个试验有两个共同的特点:
2.掷一个骰子,向上的一面的点数有多少种可能?向上一面的点数是1的概率是多少?
老师点评:1.可能结果有1,2,3,4,5等5种杯由于纸签的形状、大小相同,又是随机
抽取的,所以我们可以认为:每个号被抽到的可能性相等,都是1/5.其概率是1/5。
不管求什么事件的概率,我们都可以做大量的试脸.求频率得概率,这是上一节课也是刚才复习的内容,它具有普遍性,但求起来确实很麻烦,是否有比较简单的方法,这
种方法就是我们今天要介绍的方法-列举法,
把学生分为10组,按要求做试验并回答问题.
1.从分别标有1,2,3 ,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?其抽到1的概率为多少?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com