2.如图1所示,B左侧第二个人的位置是 ( )
A.(2,5); B.(5,2); C.(2,2); D.(5,5)
1.如图1所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么B 的位置是 ( )毛
A. (4, 5); B.(5,4); C.(4,2); D.(4,3)
如果│3x-13y+16│+│x+3y-2│=0,那么点P(x, y)在第几象限?点Q(x+1,y-1)在坐标平面内的什么位置?
七、中考题与竞赛题:(共16分)
如图4所示,图中的
能走遍棋盘中的任何一个位置吗?若不能,指出哪些位置
无法走到;若能,请说明原因.
如图所示,C,D两点的横坐标分别为2,3,线段CD=1;B,D两点的横坐标分别为-2,3,线段BD=5;A,B两点的横坐标分别为-3,-2,线段AB=1.
(1)如果x轴上有两点M(x1,0),N(x2,0)(x1<x2),那么线段MN的长为多少?
(2)如果y轴上有两点P(0,y1),Q(0,y2)(y1<y2),那么线段PQ的长为多少?
![]()
如果点A(t-3s,2t+2s),B(14-2t+s,3t+2s-2)关于x轴对称,求s, t的值.
如果点A的坐标为(a2+1,-1-b2),那么点A在第几象限?为什么?
1.如图1所示,点A的坐标是 ( )毛
A.(3,2); B.(3,3); C.(3,-3); D.(-3,-3)
2.如图1所示,横坐标和纵坐标都是负数的点是 ( ) A.A点 B.B点 C.C点 D.D点
3.如图1所示,坐标是(-2,2)的点是 ( )
A.点A B.点B C.点C D.点D
4.若点M的坐标是(a, b),且a>0,b<0,则点M在( )
A.第一象限;B.第二象限;C.第三象限;D.第四象限
二、填空题:(每小题3分,共15分)
1.如图2所示,点A的坐标为_______,点A关于x轴的对称点B的坐标为______, 点B关于y轴的对称点C的坐标为________.
2.在坐标平面内,已知点A(4,-6),那么点A关于x轴的对称点A ′的坐标为_____,点A关于y轴的对称点A″的坐标为_______.
3.在坐标平面内,已知点A(a, b),那么点A关于x轴的对称点A ′的坐标为______,点A关于y轴的对称点A″的坐标为_____.
4.点A(-3,2)在第_______象限,点D(-3,-2)在第_______象限,点C( 3, 2) 在第______象限,点D(-3,-2)在第_______象限,点E(0,2)在______轴上, 点F( 2, 0) 在______轴上.
5.已知点M(a, b),当a>0,b>0时,M在第_______象限;当a____, b______时,M 在第二象限;当a_____, b_______时,M在第四象限;当a<0,b<0时,M在第______象限.
14.(开放题)已知平面直角坐标系中有6个点:
A(3,3),B(1,1),C(9,1),D(5,3),E(-1,-9),F(-2,-
).
请将上述的6个点分成两类,并写出同类点具有而另一类点不具有的一个特征(特征不能用否定形式表达).
数学世界
笛卡儿与直角坐标系
笛卡儿(Rene.Descartes)是法国哲学家、数学家、物理学家、解析几何的奠基人之一.
有一次,笛卡儿生病,躺在床上,突然,他看到屋顶上的一只蜘蛛拉着长丝垂下来,灵机一动,他想,可以把蜘蛛看作一个点,它在屋子里上、下、左、右运动,能不能用一组有序的实数,把蜘蛛某一时刻的位置确定下来呢?他又想,屋子里相邻的两面墙,还有地面总共可以交出3条直线,如果把地面上的墙角作为起点,把交出来的3条直线作为3根数轴,那么空间中任何一点的位置,不就可以用在这3根数轴上找到的有序实数来表示吗?
在蜘蛛爬行的启示下,笛卡儿创建了坐标系,坐标系的建立是数学发展的一个重要转折点.
13.(探究题)在直角坐标系中,已知点A(-5,0),点B(3,0),△ABC的面积为12,试确定点C的坐标特点.
12.(1)(2005年,福建三明)已知点P1(a,3)与P2(-2,-3)关于原点对称,则a=____.
(2)(2005年,河南)在一次科学探测活动中,探测人员发现一目标在如图所示的阴影区域内,则目标的坐标可能是( )
A.(-3,300) B.(7,-500)
C.(9,600) D.(-2,-800)
培优作业
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com