㈠1.由概率的性质可知,任一离散型随机变量的分布列具有下述两个性质:
(1)pi≥0,i=1,2,…;
(2)p1+p2+…=1。
2.若随机变量
的分布列为:P (
=k)=Cnk pk qn-k。(k=0,1,2,…,n,0<p<1,q=1-p,则称
服从二项分布,记作
~B (n,p),其中n、 p为参数,并记Cnk pk qn-k=b(k;n,p)。
对二项分布来说,概率分布的两个性质成立。即:
(1)P (
=k)=Cnk pk
qn-k>0,k=0,1,2,…,n;
(2)
P (
=k)=
Cnk pk qn-k=(p+q) n=1。
二项分布是一种常见的离散型随机变量的分布,它有着广泛的应用。
㈡1.三种抽样方法的共同点都是等概率抽样,即抽样过程中每个个体被抽取的概率相等,体现了这三种抽样方法的客观性和公平性。若样本容量为n,总体的个体数为N,则用这三种方法抽样时,每一个个体被抽到的概率都是
。
4.线性相关性检验
相关性检验是一种假设检验,它给出了一个具体检验y与x之间线性相关与否的具体办法。限于要求,中学阶段只要求掌握这种检验方法的操作步骤,而不要求对这种方法包含的原理进行深入研究。其具体检验的步骤如下:
(1)在课本中的附表3中查出与显著性水平0.05与自由度n-2(n为观测值组数)相应的相关系数临界值
。
(2)根据公式
计算r的值。
(3)检验所得结果。
如果
,那么可以认为y与x之间的线性相关关系不显著,从而接受统计假设。
如果
,表明一个发生的概率不到5%的事件在一次试验中竟发生了。这个小概率事件的发生使我们有理由认为y与x之间不具有线性相关关系的假设是不成立的,拒绝这一统计假设也就是表明可以认为y与x之间具有线性相关关系。
有了相关性检验方法后,我们对一组数据作线性回归分析,只须先对这组数据的线性相关性进行检验。如若具有线性相关性,则可依据求回归直线方程的方法进行求解,而不必像前面那样,先画散点图,再依照散点图呈直线性后再求回归直线方程。这样就使得回归直线方程更能真实地反映实际情况,具有应用于实际的价值。
3.相关系数
有时散点图中的各点并不集中在一条直线的附近,仍可以按照求回归直线方程的步骤求得回归直线方程。显然这种情形下求得的回归直线方程没有实际意义。那么,在什么情况下求得的回归直线方程才能对相应的一组观测数据具有代表意义?课本中不加证明地给出了相关系数的公式。相关系数公式的作用在于,我们对一组数据之间的线性相关程度可作出定量的分析,而不是仅凭画出散点图,直觉地从散点图的形状粗浅地得出数据之间的线性相关程度。
2.回归分析
本节所研究的回归分析是回归分析中最简单,也是最基本的一种类型--一元线性回归分析。
对于线性回归分析,我们要注意以下几个方面:
(1)回归分析是对具有相关关系的两个变量进行统计分析的方法。两个变量具有相关关系是回归分析的前提。
(2)散点图是定义在具有相关系的两个变量基础上的,对于性质不明确的两组数据,可先作散点图,在图上看它们有无关系,关系的密切程度,然后再进行相关回归分析。
(3)求回归直线方程,首先应注意到,只有在散点图大至呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义。
5.“小概率事件”和假设检验的基本思想
“小概率事件”通常指发生的概率小于5%的事件,因为对于这类事件来说,在大量重复试验中,平均每试验20次,才能发生1次,所以认为在一次试验中该事件是几乎不可能发生的。这种认识便是进行推断的出发点。关于这一点我们要有以下两个方面的认识:一是这里的“几乎不可能发生”是针对“一次试验”来说的,因为试验次数多了,该事件当然是很可能发生的;二是当我们运用“小概率事件几乎不可能发生的原理”进行推断时,我们也有5%的犯错误的可能。就是说,这里在概率的意义上所作的推理与过去确定性数学中的“若a则b”式的推理有所不同。
课本是借助于服从正态分布的有关零件尺寸的例子来介绍假设检验的基本思想。进行假设检验一般分三步:
第一步,提出统计假设。课本例子里的统计假设是这个工人制造的零件尺寸服从正态分布
。
第二步,确定一次试验中的取值a是否落入范围(μ-3σ,μ+3σ)。
第三步,作出推断。如果a∈(μ-3σ,μ+3σ),接受统计假设;如果
,由于这是小概率事件,就拒绝统计假设。
上面这种拒绝统计假设的推理,与我们过去学习过的反证法有类似之处。事实上,用反证法证明一个问题时,先否定待证命题的结论,这本身看成一个新的命题,从它出发进行推理,如果出现了矛盾,就把这个矛盾归因于前述新命题不正确,从而将它否定。否定了新命题,也就等于证明了原命题的结论。
㈦线性回归
回归分析:对于两个变量,当自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫相关关系或回归关系。
回归直线方程:设x与y是具有相关关系的两个变量,且相应于n个观测值的n个点大致分布在某一条直线的附近,就可以认为y对x的回归函数的类型为直线型:
。其中
,
。我们称这个方程为y对x的回归
直线方程。
4.一般正态分布与标准正态分布的转化
由于一般的正态总体
其图像不一定关于y轴对称,所以,研究其在某个区间
的概率时,无法利用标准正态分布表进行计算。这时我们自然会思考:能否将一般的正态总体
转化成标准的正态总体N(0,1)进行研究。人们经过探究发现:对于任一正态总体
,其取值小于x的概率
。对于这个公式,课本中不加证明地给出,只用了“事实上,可以证明”这几个字说明。这表明,对等式
的来由不作要求,只要会用它求正态总体
在某个特定区间的概率即可。
3.标准正态曲线
标准正态曲线N(0,1)是一种特殊的正态分布曲线,它是本小节的重点。由于它具有非常重要的地位,已专门制作了“标准正态分布表”。对于抽像函数
,课本中没有给出具体的表达式,但其几何意义非常明显,即由正态曲线N(0,1)、x轴、直线
所围成的图形的面积。再由N(0,1)的曲线关于y轴对称,可以得出等式
,以及标准正态总体在任一区间(a,b)内取值概率
。
2.正态曲线及其性质
对于正态分布函数:
,x∈(-∞,+∞)
由于中学知识范围的限制,不必去深究它的来龙去脉,但对其函数图像即正态曲线可通过描点(或计算机中的绘图工具)画出课本图1-4中的图(1)、(2)、(3),由此,我们不难自己总结出正态曲线的性质。
1.正态分布的重要性
正态分布是概率统计中最重要的一种分布,其重要性我们可以从以下两方面来理解:一方面,正态分布是自然界最常见的一种分布。一般说来,若影响某一数量指标的随机因素很多,而每个因素所起的作用都不太大,则这个指标服从正态分布。例如,产品尺寸是一类典型的总体,对于成批生产的产品,如果生产条件正常并稳定,即工艺、设备、技术、操作、原料、环境等可以控制的条件都相对稳定,而且不存在产生系统误差的明显因素,那么,产品尺寸的总体分布就服从正态分布。又如测量的误差;炮弹落点的分布;人的生理特征的量:身高、体重等;农作物的收获量等等,都服从或近似服从正态分布。另一方面,正态分布具有许多良好的性质,很多分布可以用正态分布来近似描述,另外,一些分布又可以通过正态分布来导出,因此在理论研究中正态分布也十分重要。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com